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Abstract 
Korsakova, S., Korsakov, P., Evstigneev, V., 2025. Spring phenological models combining the effects of 
temperature and photoperiod are successfully transferred to various spatial and temporal scales: a case study 
of Aesculus hippocastanum L. Folia Oecologica, 52 (1): 22–33.

On the basis of long-term, high-quality in situ observations on phenological and meteorological data, we pa-
rameterised and examined the performances of four single-phase and two two-phase models for the prediction 
of the leaf unfolding and flowering dates of horse chestnut (Aesculus hippocastanum L.). Amongst models, 
those combining the effects of temperature and photoperiod showed the best phenophase prediction, suggest-
ing the influence of photoperiod on the leaf unfolding and flowering of A. hippocastanum. The obtained coef-
ficients showed that the effect of photoperiod was greater on leaf unfolding than on flowering. Comprehensive 
assessment revealed that the single-phase BCdoy model demonstrated the best fitting for both phenophases. 
This model also showed sufficiently high accuracy and the transferability of results in time and space. The 
proposed models can be used to predict the spring phenophases of A. hippocastanum in European and Asian 
countries, where this ornamental tree species is widely used in urban landscaping, and to optimise control 
methods against Cameraria ohridella Deschka & Dimić (Lepidoptera, Gracillariidae). For C. ohridella, the 
first flying out of adults after overwintering begins at the onset of horse chestnut leaf unfolding and mass flight 
occurs during the full flowering period.
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Introduction

Phenology is attracting increasing interest from scientists 
around the world due to its sensitivity to climatic chang-
es (Minin et al., 2016; Mo et al., 2023). Variations in the 
timing of phenological phase onset in plants have effects 
on ecosystem processes, such as photosynthesis, carbon 
and water cycles, biomass accumulation, microclimate, 
animal–plant interactions (Richardson et al., 2013) and 
competition for light and water resources. Therefore, the 
importance of the study of phenological phase changes 

over the long term has increased in light of the effects of 
climate warming on the plant and animal worlds. 
	 In plants, flowering and leaf unfolding are the key 
phenological phases that determine their reproduction and 
growth (Wang et al., 2022). For most deciduous trees of 
the Northern Hemisphere, these phases occur in spring 
(Buonaiuto and Wolkovich, 2021). Temperature is 
the most important abiotic factor affecting plant devel-
opment in spring amongst (Parmesan, 2007; Flynn and 
Wolkovich, 2018). The timing of vegetation initiation in 
approximately 30% of plant species (Zohner et al., 2016) 
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is controlled by photoperiod and temperatures (Laube et 
al., 2014; Gauzere et al., 2019). Although the influence of 
photoperiod as the main factor for spring development is 
disputed, its importance may increase due to global warm-
ing (Malyshev et al., 2018). For example, a shortened 
photoperiod may reduce temperature sensitivity and in-
crease the need for warmth to restrain the excessively early 
phenological development of a species (Fu et al., 2019).
	 The associated roles of winter cooling, spring warm-
ing and photoperiod in regulating the timing of spring 
phenophases of plants are closely related to the ecological 
characteristics of a species (Polgar and Primack, 2011; 
Basler and Körner, 2012; Laube et al., 2014; Zohner 
and Renner, 2015). During winter, plant buds undergo 
three different dormancy states: para-, endo- and ecodor-
mancy (Lang et al., 1987). The paradormancy phase is in-
duced by physiological factors outside the plant bud. The 
endodormancy phase, which is induced by internal causes, 
has adaptive importance and is a hereditarily fixed state 
that persists even when growth-favourable external condi-
tions occur. In the ecodormancy phase, growth inhibition 
is induced by the absence of favourable environmental 
conditions for growth processes. Once favourable con-
ditions for growth are established, ecodormancy releases 
(Lang et al., 1987; Basler, 2016).
	 The analysis and prediction of plant phenological 
reactions to climatic changes of varying intensities are 
given a special role because changes in plant life can sub-
stantially affect individual ecosystem components and the 
entire ecosystem (Wolkovich et al., 2012). Phenological 
models based on physiological processes are used to quan-
tify the influence of environmental factors on the seasonal 
development of plants. They differ in their levels of com-
plexity and types of response functions to environmental 
conditions (Basler, 2016). Models that describe the cu-
mulative effect of temperature on bud development during 
the ecodormancy phase are called one-phase models. 
Complex two-phase models account for the chilling and 
forcing temperatures affecting bud development during the 
endo- and ecodormancy phases (Basler, 2016; Mo et al., 
2023). As the number of factors increases, the complexity 
of models and their parameterisation also increases. Given 
the lack of a single universal model for predicting the dates 
of phenophases in spring for different plant species, the 
best predictive models are still species-specific (Basler, 
2016). Few studies comparing their performances and re-
liability exist (Basler, 2016). Performance refers to the 
ability of a model to provide accurate predictions under 
the conditions used to calibrate it, and reliability refers to 
the ability of a model to provide accurate predictions under 
varying external conditions (Asse et al., 2020). Therefore, 
comparing the performance and reliability of one- and two-
phase models under climate change can be highly useful.
	 Currently, testing, comparing the performances of 
phenological models and predicting the phenological re-
sponses of plants to climate change under different warm-
ing scenarios is predominantly conducted in Europe and 
China (Wolkovich et al., 2012; Zohner et al., 2016; 
Basler, 2016; Gauzere et al., 2019; Asse et al., 2020; 

Wang et al., 2022; Mo et al., 2023). This situation is 
greatly facilitated by the availability of open-access sci-
ence and educational phenological observation databases, 
such as Pan European Phenological database (http://www.
pep725.eu) and Chinese Phenological Observation Net-
work (http://www.cpon.ac.cn/) (GE et al., 2015).
	 Russian phenological data, which have a history of 
secular observations on the seasonal development of plant 
species, are unique and important for science. Despite 
the active accumulation of phenological knowledge and 
contributions of leading scientists to the development of 
phenological methodology, only a small part of the pheno-
logical heritage in Russia is currently available for scien-
tific analysis (Minin et al., 2020). “Chronicles of Nature 
Calendar,” a long-term and large-scale multitaxon data-
base on phenological and climatic observations collected 
in the Russian Federation, Ukraine, Uzbekistan, Belarus 
and Kyrgyzstan, has been published recently (Ovaskainen 
et al., 2020) and is freely available (http://chronicleofna-
ture.com/). However, as of today, only approximately 5% 
of the total phenological data have been digitised, and the 
majority of the data are unavailable to the public domain 
(Minin et al., 2020).
	 Therefore, quantifying the relationship between the 
environment and plant functional traits and accurately 
predicting phenological changes are important for under-
standing and forecasting the effects of climate change. 
This relationship is best revealed through detailed long-
term observations on organisms in the same system.
	 We focused our analysis on horse chestnut (Aescu-
lus hippocastanum L.), a large deciduous tree, because 
this species is widespread in tree plantations, gardens and 
streets across Europe and other temperate regions. It is 
extensively utilised in similar studies in European coun-
tries wherein contradictory results have been obtained 
regarding its phenological responses to photoperiod 
(Basler and Körner, 2012; Laube et al., 2014; Zohner 
and Renner, 2015; Fu et al., 2019; Geng et al., 2022). 
Recently, horse chestnut trees in almost all regions of 
their distribution have been affected by the horse chest-
nut leaf miner moth, Cameraria ohridella Deschka & 
Dimić, 1986 (Lepidoptera, Gracillariidae). This situation 
not only leads to the loss of the trees’ decorative appeal 
but also weakens them, thereby reducing their resistance 
to adverse environmental factors. For C. ohridella, the 
flying out of adults after overwintering begins at the leaf 
unfolding onset of horse chestnut in spring (Korzh and 
Trikoz, 2022), and their mass flight occurs during the 
full flowering period (Shvydenko et al., 2021). There-
fore, the accurate prediction of the leaf unfolding and 
flowering dates of horse chestnut is of great importance 
in the development of effective measures to optimise pest 
control methods.
	 The goals of this study are based on detailed observa-
tions over an extended period of time and are as follows: 
(1) to compare the performance of parameterised pheno-
logical models for the leaf unfolding and flowering of 
horse chestnut; (2) to find the optimal phenological mod-
el for each phenophase; (3) and to test selected models for 



24

spatial and temporal transferability by using a set of phe-
nological and meteorological data covering a wide range 
of latitudes, longitudes and altitudes above sea level.

Materials and methods

Phenological and climatic data

We used high-quality phenological (provided by uniform 
methodology and observations by experienced specialists 
over the entire period and at the same sites) and meteo-
rological data collected over a long period (1931–2022) 
from Nikitsky Sad agrometeorological station to parame-
terise the models for the first leaf unfolding and full flow-
ering of A. hippocastanum. Study sites for phenological 
observations are located in the area of the Nikitsky Botan-
ical Garden (Yalta region, 44.51°N, 34.24°E, altitude of 
190 m above sea level) in the northern part of the Black 
Sea region in the territory of the Southern Coast of Crimea 
(SCC). The agrometeorological station Nikitsky Sad is lo-
cated in the vicinity (approximately 200 m) of the sites 
of phenological observations. Using the long-term and 
homogeneous dataset of observations favours the identifi-
cation of only climate-induced changes in the flora regime 
in the area.
	 The climate of the SCC is classified as subtropical 
Mediterranean with hot arid summers, predominance of 
autumn–winter precipitation and mild wet winters with 
frequent thaws. Throughout the year, the average monthly 
air temperatures are above 0 °C, with February being the 
coldest month and August being the warmest. The average 
annual air temperature is 12.6 °C, and the average annual 
precipitation is 592 mm (Korsakova et al., 2023).
	 The date of phenophase onset was considered to be 
the day of phenophase onset in at least 50% of plants. Phe-
nological observations were made on 5–10 horse chestnut 
trees once every 2 days during spring development. Two 
phenological stages based on the Biologische Bundesan-
talt, Bundessortenamt and Chemische Industrie (BBCH) 

code were considered in this study: BBCH 11, leaf unfold-
ing and BBCH 65, full flowering onset (Finn et al., 2007).

Phenological models

We tested six phenological models (Table S1), which dif-
fered by their complexities and types of response functions 
to environmental signals (temperature and photoperiod): 
GDD, ВСdoy, SIGdoy, SIGFOTOdoy, SEQBCdoy and 
UniChill (Olsson et al., 2017; Korsakova et al., 2020). 
The GDD model (Chuine et al., 2003) describes the lin-
ear response of plants to temperatures above the base tem-
perature (Tb) as a parameter. The BCdoy model (Blümel 
and Chmielewski, 2012) is a modified extension of the 
GDD model with a parameterised starting day of heat 
accumulation (forcing temperature), supplemented by an 
exponential constant (EXPO) to relate the photoperiod 
and temperature response. In the SIGdoy (Migliavac-
ca et al., 2012), SIGFOTOdoy (Korsakova et al., 2023) 
and UniChill (Chuine, 2000) models, the response of 
phenological processes to temperature is described by a 
sigmoidal function starting from a parameterised day. In 
the SEQBCdoy model, the daily rate of chilling (Rc) is 
described by a triangular function (Hänninen, 1990), and 
the linear BCdoy describes the forcing level (Blümel and 
Chmielewski, 2012).
	 While modelling, we adhered to the assumption that 
the date of bud emergence from dormancy (t1) occurs after 
the accumulation of the daily rate of chilling (Rc) reaches a 
critical sum of chilling units C* (see Eqn.1):

                                                                                         
 (1)

where Sct is the state of chilling; Rc is the daily rate of 
chilling; t0 is the starting date of chilling unit accumula-
tion (day of the year [DOY]); t1 is the date of the end of 
the endodormancy phase (the chilling requirement is com-
pleted, start of forcing) (DOY); Tt is the daily mean air 
temperature (°C); and C* is the chilling unit requirement 
for endodormancy release (CU).
	 In two-phase sequential models, t1 is the starting 

Fig. 1. Distribution of the phenological and weather stations used in this study. Circles indicate phenological stations, and 
triangles indicate meteorological stations.
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date of forcing accumulation. In the single-phase external 
forcing models GDD, BCdoy, SIGdoy and SIGFOTOdoy 
(Table S1), it is assumed that at time t1, the demand for 
low-temperature forcing is fulfilled or the plant does not 
require vernalisation (Chuine et al., 2003).
	 The duration of forcing accumulation from t1 to the 
date of phenophase onset (t2) is related to the temperature 
sums of forcing (Sf) and accumulated daily rates of forcing 
(Rf). Phenophase occurs when the accumulated Rf reaches 
a critical amount of forcing units F* (Eqn. 2):

                                                                                         (2)

where Sft is the state of forcing; Rf is the daily rate of 
forcing; t1 and t2 are the dates of the start of tempera-
ture forcing and phenophase onset, respectively (DOY); 
Tt is the daily mean air temperature (°C); and F* is the 
critical amount of forcing units needed to reach pheno-
phase onset (FU).
	 The input data for modelling were the daily mean 
air temperatures and photoperiod duration. The duration 
of day length was calculated as a function of latitude and 
DOY (Forsythe et al., 1995). The parameters of pheno-
logical models were selected through evolutionary opti-
misation by using the Microsoft Excel add-in “Solution 
Search” (Korsakova et al., 2023). The optimisation goal 
function was the root mean square error (RMSE) expressed 
in days to minimise the difference between the forecast 
and observation dates. The optimisation procedure was 
repeated at least 30 times to ensure that the global opti-
mum was reached. This iterative process was continued 

until the value of the objective function (minimisation of 
RMSE) stabilised, that is, it ceased to change over several 
consecutive calculations with a precision of up to 1e−15 due 
to Excel’s limitation on the number of significant digits 
that could be displayed. The phenological models were 
verified by using data from odd-numbered years, and data 
from even-numbered years were used for validation. The 
best models selected were additionally tested for spatial 
and temporal transferability.
	 Freely available data from the Pan-European Phe-
nology Project (PEP) (http://www.pep725.eu) (Templ, 
2018) and recent studies were used to test phenological 
models (Fazilova, 2013; Kuranda, 2021; Ovaskainen et 
al., 2020; Shvydenko et al., 2021). Data on daily mean 
temperature from the nearest meteorological stations 
were obtained from the All-Russia Research Institute 
of Hydrometeorological Information–World Data Cen-
tre, Roshydromet (http://meteo.ru/data), Global Weather 
Data Portal (https://rp5.ru) and WMO/King Meteoro-
logical Institute (Netherlands) (https://climexp.knmi.
nl/). The phenological and meteorological datasets used 
for model validation cover-ed wide ranges of latitudes 
(from 41.27°N to 55.87°N), longitudes (from −1.88°E to 
83.78°E) and elevations (from 11 m to 1350 m) (Fig. 1, 
Tables S2 and S3).

Model estimation

The comparative assessment of model accuracies was 
performed on the basis of four goodness-of-fit measures: 

Table 1. Best parameter sets and statistics (R2, RMSE, AIC, and θ) of the phenology models used to predict the leaf unfolding 
dates of A. hippocastanum

Phenological model
GDD	 ВСdoy	 SIGdoy	 SIGFOTOdoy	 SEQBCdoy	 UniChill
Parameters
t1 = 1.Jan	 t1  = 28.Jan	 t1 = 14.Feb	 t1 = 13.Feb	 t0 = 01.Nov	 t0 = 01.Dec
Tb = 6.7	 Tb  = 2.2	 bf = −0.1533	 bf = −0.4768	 Topt = 2.5	 ac = 0.1000
F* = 85.0	 EXPO = 3.4781	 сf = 13.9044	 сf  = 6.9606	 C* = 33.4	 bc = −2.4404
	 F* = 549.1	 F* = 14.7	 EXPO = 1.7976	 t1 = 21.Feb	 сc = −1.1483
			   F* = 36.4	 Tb = 2.9	 C* = 55.3
				    EXPO = 2.9485	 t1  = 28. Jan
				    F* = 444.8	 bf = −0.1970
					     сf = 14.7879
					     F* = 12.4
Goodness-of-fit measures of the calibration subset
R2 = 0.66	 R2 = 0.80	 R2 = 0.67	 R2 = 0.71	 R2 = 0.67	 R2 = 0.65
RMSE = 6.0	 RMSE = 3.5	 RMSE = 4.4	 RMSE = 4.2	 RMSE = 4.6	 RMSE = 5.1
AICc = 128.78	 AICc = 91.34	 AICc = 108.36	 AICc = 104.83	 AICc = 112.1	 AICc = 121.25
θ = −0.3	 θ = 0.2	 θ = −0.4	 θ = −0.5	 θ = 0.4	 θ = 0.4
Goodness-of-fit measures of the validation subset
R2 = 0.62	 R2 = 0.60	 R2 = 0.53	 R2 = 0.60	 R2 = 0.61	 R2 = 0.60
RMSE = 7.0	 RMSE = 4.7	 RMSE = 5.3	 RMSE = 4.9	 RMSE = 4.9	 RMSE = 5.6
θ = −0.7	 θ = −1.4	 θ = −1.6	 θ = 0.7	 θ = −1.7	 θ = −2.3

t0, t1 and t2, starting dates of chilling, forcing unit accumulation and phenoevent onset, respectively. Topt, optimal chilling 
temperature (°C). Tb, threshold of daily mean air temperature for forcing unit accumulation (°C). C*, chilling unit requirement 
(CU). F*, forcing unit requirement (FU). ac,bc,cc,bf,cf, empirical parameters of the sigmoidal function (c, chilling, f, forcing). 
EXPO, exponential constant for relating forcing accumulation to day length.
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coefficient of determination (R2), RMSE (days), adjusted 
Akaike information criterion (AICc) and bias (θ, days):

                                                                                         (3)

                                                                                        
                                                                                          (4)

                                                                                          
                                                                                          (5) 

                                                                                          (6)

where obsi is the observable date, obsi is the observed 
mean date, prei is the predicted date of phenophase onset 
(in DOY), n is the number of years of observations and k 
is the number of model parameters (Gauzere et al., 2017; 
Korsakova et al., 2023). 
	 Data analysis on modelling results was performed 
by using R software version 4.2.2 (R Core Team, 2022). 
Data visualisation and figures were created by using gg-
plot2 (Wickham, 2016).

Results

Reducing the uncertainty associated with the effect of 
climate change on natural systems requires the accurate 

assessment of vegetation feedback, which, in turn, de-
pends on the accurate predictions of spring phenology and 
climate change. The parameters of single- and two-phase 
models were optimised on the basis of the data from long-
term observations on the SCC (Tables 1–2) to select the 
most effective predictive model for the dates of the first 
leaf unfolding and full flowering onset of horse chestnut.
	 Residuals were tested for normality to assess the 
adequacy of the models (Fig. S1). In accordance with 
the results of the assessment, we can conclude that the 
analysed samples of the model residuals were normally 
distributed. Goodness-of-fit measures based on four cri-
teria showed that all models satisfactorily described the 
winter–spring development of the generative structures 
of horse chestnut (Table 2). However, higher accuracy 
in approximating developmental processes to predict 
the timing of leaf unfolding was achieved when using 
the ВСdoy, SIGFOTOdoy and SEQBCdoy models than 
when other models were applied (Table 1). Compared 
with those obtained by using the GDD, SIGdoy and 
UNIChill models, the RMSE values for the calculations 
of leaf unfolding date acquired by using these models 
were lower, differing insignificantly and ranging from 
3.5 days to 4.9 days. The magnitude of systematic bias 
did not exceed 0.1–1.7 days, and the coefficients of de-
termination ranged from 0.60 to 0.80. On the basis of 
the AIC measure, the best models for predicting the phe-
nodates of leaf unfolding were determined to be ВСdoy 
and SIGFOTOdoy and those for predicting the pheno-
dates of full flowering onset were BCdoy, SIGdoy, SIG-
FOTOdoy, SEQBCdoy and UNIChill. Therefore, the 

Table 2. Best parameter sets and statistics (R2, RMSE, AIC and θ) of phenology models for predicting the dates of the full 
flowering onset of A. hippocastanum

GDD	 ВСdoy	 SIGdoy	 SIGFOTOdoy	 SEQBCdoy	 UniChill
Parameters
t1 = 1.Jan	 t1 = 13.Feb	 t1 = 12.Feb	 t1 = 10.Feb	 t0 = 01.Nov	 t0 = 01.Dec
Tb = 6.8	 Tb = 3.1	 bf = −0.1314	 bf = −0.1901	 Topt = 1.4	 ac = 0.1060
F* = 188.7	 EXPO = 2.0282	 сf = 20.8575	 сf = 14.5597	 C* = 45.1	 bc = −2.0079
	 F* = 685.3	 F* = 13.6	 EXPO = 1.0826	 t1 = 12.Feb	 сc = −4.4271
			   F* = 26.3	 Tb = 5.4	 C* = 72.9
				    EXPO = −0.01888	 t1 = 13.Feb
				    F* = 247.5	 bf = −0.1540
					     сf = 19.5091
					     F* = 12.9
Goodness-of-fit measures of the calibration subset
R2 = 0.70	 R2 = 0.80	 R2 = 0.83	 R2 = 0.82	 R2 = 0.81	 R2 = 0.82
RMSE = 4.2	 RMSE = 2.9	 RMSE = 2.7	 RMSE = 2.7	 RMSE = 3.3	 RMSE = 2.8
AICc = 101.63	 AICc = 70.57	 AICc = 71.53	 AICc = 72.86	 AICc = 85.55	 AICc = 76.60
θ = −0.1	 θ = −0.1	 θ = −0.1	 θ = −0.2	 θ = −0.1	 θ = 0.0
Goodness-of-fit measures of the validation subset
R2 = 0.68	 R2 = 0.78	 R2 = 0.77	 R2 = 0.74	 R2 = 0.78	 R2 = 0.75
RMSE = 4.8	 RMSE = 3.3	 RMSE = 3.2	 RMSE = 3.3	 RMSE = 3.3	 RMSE = 3.4
θ = 0.2	 θ = 0.2	 θ = 0.3	 θ = 0.2	 θ = 0.3	 θ = 0.6

t0, t1 and t2, starting dates of chilling, forcing unit accumulation and phenoevent onset, respectively. Topt, optimal chilling 
temperature (°C). Tb, threshold of daily mean air temperature for forcing unit accumulation (°C). C*, chilling unit requirement 
(CU). F*, forcing unit requirement (FU). ac,bc,cc,bf,cf, empirical parameters of the sigmoidal function (c, chilling, f, forcing). 
EXPO, exponential constant for relating forcing accumulation to day length. 
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interannual variability in the leaf unfolding and flowering 
dates of horse chestnut was better described by the mod-
els accounting for the combined effect of temperature 
and photoperiod on bud development processes (BCdoy, 
SIGdoy and SIGFOTOdoy) than by other models. Con-
sistent with the data of earlier studies that showed strong 
photoperiodic control in the spring leaf unfolding of A. 
hippocastanum (Geng et al., 2022), the values of the ob-
tained EXPO coefficients indicated that the influence of 
photoperiod was more significant for the leaf unfolding 
phase than for the flowering phase. 
	 The degree of linear correspondence between the 
predicted and measured values was evaluated by regres-
sion analysis to identify the possible bias of the predict-
ed leaf unfolding and flowering dates in accordance with 
phenological models towards systematic advance or delay 
(Fig. 2). The theoretically predicted value (y) and mea-
sured value (x) should have a linear relationship of 1:1.
	 The graphical analysis of the models revealed that 
the tangents of the linear regression slopes of most mod-
els, except for the GDD, SEQBCdoy and UNIChill mod-
els, for predicting the onset of phenological phases were 
close to unity for leaf unfolding. The shift parameters of 
BCdoy and SIGFOTOdoy were close to zero and did not 
exceed 1.9 days, indicating the absence of systematic er-
ror (Fig. 2). In general, the results of the comprehensive 

evaluation indicated that the best fit value for both phe-
nophases was shown by the ВСdoy model. The ВСdoy 
model accurately described the interannual variability of 
leaf unfolding and full flowering and can be used to pre-
dict these phenophases.
	 Taking into account the trade-off between the ex-
pected accuracy and result transferability and the fact 
that phenological models tend to underestimate interan-
nual variations in phenophases, the selected ВСdoy mod-
el was further tested for transferability in time and space. 
For this purpose, data from independent observations of 
the leaf unfolding and full flowering of horse chestnut 
over a wide range of latitudes, longitudes and altitudes 
were used (Fig. 1, Table S2). These data were not used in 
model construction (Fig. 3).
	 The estimation of a single set of parameters for the 
BCdoy model to match phenological stages across all 
sites resulted in mean pooled external validation errors 
(RMSEs) of 5.6 days for the leaf unfolding phase and of 
4.6 days for the flowering phase. In external validation 
across sites, the lowest RMSE for leaf unfolding were 
obtained in Marnitz, Germany (3.9 days), and the highest 
were obtained in Adelboden, Switzerland (7.6 days). The 
mean of the RMSE values for flowering ranged from 1.6 
days in Bryansk (Russia) and 1.9 days in Daruvar (Croa-
tia) to 7.5 days in Bournemouth (England).

Fig. 2. Comparisons of the observed and model-predicted phenophase dates for A. hippocastanum. Simulated (x-axis) vs. ob-
served (y-axis) dates in Julian days (DOYs) of leaf unfolding and full flowering. Dates of leaf unfolding are presented in pink, 
whereas those of full flowering are presented in blue.
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Discussion

Our study of six phenological models for predicting the 
leaf unfolding and flowering dates of A. hippocastanum 
based on long-term in situ data observations revealed that 
in general, the temperature-driven GDD model showed the 
lowest performance amongst the models that we tested. 
Moreover, the GDD model showed larger systematic biases 
than the other five models. Two-phase models (SEQBCdoy 
and UNIChill), with the exception of the GDD model, did 
not perform better than one-phase models. However, these 
models can simulate interannual variations in the date of the 
spring phenophase onset well. Some previous studies also 
showed that model complexity does not necessarily lead to 
increased accuracy, partly because not all species require 
chilling exposure (Basler, 2016; Meng, et al., 2021; Mo 
et al., 2023). From a statistical perspective, the two mod-
els for the prediction of leaf unfolding dates (ВСdoy and 
SIGFOTOdoy) and the five models for the prediction of full 
flowering dates (BCdoy, SIGdoy, SIGFOTOdoy, SEQBC-
doy and UNIChill) showed comparable predictive accuracy. 
In general, all models had higher accuracy in simulating full 
flowering dates than leaf unfolding dates.
	 A linear regression analysis–based comparison of 
the predicted and actual dates of the leaf unfolding and 
flowering onset of A. hippocastanum obtained by using 
the GDD and UNIChill models revealed significant bias. 
The tangent of the inclination angle of the linear regression 
models was less than one, and the shear ranged from 8 
days to 28 days for the UNIChill model and from 41 days 
to 43 days for the GDD model. These results indicated that 
when calculated with these models, the onsets of leaf un-
folding and flowering at early plant development in spring 
will be predicted with lag and those in a later period will be 
ahead of the real phenophase date. This situation may con-
tribute to increasing uncertainty in transferring models to 
various spatial scales and in the long-term assessment of the 

effects of possible climate change (Korsakova et al., 2023).
	 Our results revealed that models including photope-
riod demonstrated higher accuracy in the prediction of the 
spring phenology of horse chestnut and had better tempo-
ral transferability than other models. The superior pheno-
phase prediction performance of the phenological models 
that included photoperiod to those that did not indicated 
that day length largely controlled the leaf unfolding and 
flowering days of A. hippocastanum. However, the coef-
ficients obtained showed that the photoperiod effect was 
greater on leaf unfolding than on flowering. Our findings 
are at odds with some earlier published data (Basler and 
Körner, 2012) but align with several previous findings 
(Laube et al., 2014; Zohner et al., 2016; Flynn and 
Wolkovich, 2018; Geng et al., 2022) reflecting strong 
photoperiod control in spring leaf unfolding. Similar pat-
terns regarding the effect of photoperiod on spring leaf-out 
were also revealed on the regional scale by using in situ 
observational datasets (Meng, et al., 2021). 
	 According to the results of the comprehensive eval-
uation, the best fit value for both phenophases was shown 
by the single-phase ВСdoy model. This model (model M1 
in Blümel and Chmielewski, 2012; Basler, 2016; Mo 
et al., 2023) also provided the best results in modelling 
the timing of the spring phenology of horse chestnut and 
some other tree species in central Europe (Basler, 2016; 
Mo et al., 2023). Recent studies have demonstrated that 
single-phase heat–time models simulating only the eco-
dormancy phase often show similar or better performance 
than more complex two-phase models (Basler, 2016; 
Asse et all., 2020; Mo et al., 2023). The accuracy of pre-
dicting the onset of growth and flowering in spring largely 
depends on the structure of the phenological model, which 
requires an improved understanding of the interaction of 
various specific functional types of plants (photoperiod 
sensitivity and chilling requirement) with environmental 
factors (Chuine et al., 2003; Basler, 2016; Gauzere et al., 

Fig. 3. Scatterplots of the observed and simulated leaf unfolding and flowering dates in a dataset for calibration (SCC, Yalta 
region) and independent verification (individual sites located in other regions) using the single-phase BCdoy model.
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2019; Meng et al., 2021).
	 The phenological observation sites used for BCdoy 
model validation in this study are located in Germany, 
Switzerland, England, France, Croatia, Slovakia, Bos-
nia and Herzegovina, Russia, Ukraine, Belarus and Uz-
bekistan, spanning elevations of 11–1,440 m above sea 
level, latitudes of 41.27°N–55.87°N and longitudes of 
1.88°E–83.78°E. The transfer of the site-specific param-
eters of the ВСdoy model for the SCC (Yalta region) to 
other sites with different climatic and geographical char-
acteristics demonstrated the sufficiently high accuracy 
and transferability of the results in time and space in cool 
and warm regions. This finding allows the use of the BC-
doy model to forecast the leaf unfolding and flowering 
dates of A. hippocastanum not only in the SCC but also 
in other regions where it is cultivated. 
	 The model likely calculates plant development under 
current and warm climate conditions (Mo et al., 2023) real-
istically because the inclusion of day length limited the influ-
ence of temperature on bud development in the beginning of 
the year (Blümel and Chmielewski, 2012). A previous study 
(Meng et al., 2021) revealed the role of photoperiod as a crit-
ical factor regulating spring phenology, delaying early leaf 
unfolding and accelerating late leaf unfolding caused by tem-
perature fluctuations. Thus far, however, many studies iden-
tified photoperiod as a critical but still understudied factor in-
fluencing spring phenology (Fu et al., 2019; Asse et al., 2020; 
Meng et al., 2021; Mo et al., 2023). Specifically, whether and 
to what extent day length affects phenological development 
is unclear, leading to considerable uncertainties in projecting 
future phenological changes (Meng et al., 2021).Therefore, 
the proposed models can be used to predict the spring pheno-
phases of A. hippocastanum in European and Asian countries, 
where horse chestnut is widely used in urban landscaping and 
is one of the most valuable ornamental tree species. Current-
ly, in almost all growing regions, the leaves of horse chestnut 
are damaged by the horse chestnut leaf miner C. ohridella. 
Given the devastating damage that it causes to horse chest-
nut in cities, C. ohridella is included in the list of the 100 
most dangerous invasive species in the European Union 
(Korzh and Trikoz, 2022). A relationship has been found 
between the phenological development of horse chestnut 
and the life cycle of C. ohridella (Shvydenko et al., 2021; 
Korzh and Trikoz, 2022). After winter, moths begin to 
fly simultaneously with phenological indicators, such as 
the leaf unfolding onset of A. hippocastanum (Korzh 
and Trikoz, 2022), and their mass flight occurs at the full 
flowering of A. hippocastanum (Shvydenko et al., 2021). 
Our findings have considerable practical implications. 
Forecasting the spring phenophases of A. hippocastanum 
by using the developed phenological models will contrib-
ute to the optimisation of methods for controlling the horse 
chestnut leaf miner C. ohridella and the preservation of 
this popular ornamental tree.

Conclusions

We calibrated and examined six phenology models. The 

major parameters of these models were carefully estimat-
ed over local scales by using long-term meteorological data 
and phenological observations acquired in situ. All models 
performed better than the GDD model, and amongst mod-
els, the BCdoy model performed the best in the prediction of 
the leaf unfolding and flowering dates of A. hippocastanum. 
Our investigation provided evidence that the inclusion of 
the photoperiod effect in phenological models remarkably 
improves accuracy in predicting the temporal and spatial 
variations in the spring phenophases of leaf unfolding and 
flowering. The possibility of transferring a model that in-
cludes photoperiod to various spatial and temporal scales 
was successfully tested on the basis of independent obser-
vations for the leaf unfolding and flowering of horse chest-
nut over a wide range of latitudes, longitudes and altitudes 
above sea level. The phenological models for predicting the 
dates of leaf unfolding and flowering of A. hippocastanum 
developed in our study are useful tools for the control of 
C. ohridella because they offer valuable information for 
urban landscaping management and planning. In addition, 
the accurate prediction of phenological stages contributes 
to the implementation of effective strategies for controlling 
the number and reducing the harmfulness of phytophagous 
populations, as well as enabling timely action, to preserve 
the popular ornamental tree A. hippocastanum. Our findings 
point to the necessity of considering photoperiod together 
with temperature in predicting phenological changes under 
climate warming.
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Table S1. Model equations for the prediction of the leaf unfolding and full flowering dates of horse chestnut

t0, t1 and t2, starting dates of chilling, forcing unit accumulation and phenoevent onset, respectively. Topt, optimal chilling 
temperature (°C). Tb, threshold of daily mean air temperature for forcing unit accumulation (°C). C*, chilling unit requirement 
(CU). F*, forcing unit requirement (FU). ac,bc,cc,bf,cf, empirical parameters of the sigmoidal function (c, chilling, f, forcing). 
EXPO, exponential constant for relating forcing accumulation to day length.

Model                       Equation	
GDD	

ВCdoy

SIGdoy

FOTOdoy	

SEQBCdoy	
	

UniChill	

Supplementary material 

Fitting parameters

Tb,F
*;

t1=1 January

	
Tb,EXPO, F*, t1

	
	

bf,cf,F
*,t1

bf,cf,  EXPO, F*,t1

	

Topt, C
*; 

t0 = 1 November
Tb,EXPO,F*,t1

	
	
ac, bc, cc, C

*;
t0=1 December
bf,cf,F

*, t1

Fig. S1. Histogram of prediction errors for: a) leaf unfolding and b) full flowering date from phenological models for A. hippo-
castanum in the SCC for the period of 1931–2022.
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Table S3. Geographical locations of weather stations

Country, region	 Site	 Longitude	 Latitude	 Altitude	 Years 
		  (°N)	 (°E)	 (m a.s.l.)	
Uzbekistan	 Tashkent	 41. 267	 69. 267	 488	 1975–1980 
					     2010–2012
Crimea	 Yalta	 44. 510	 34.240	 207	 1930–2022
Bosnia and Herzegovina	 Bihac	 44. 817	 15.883	 246	 1975–1989
Croatia	 Daruvar	 45.600	 17.200	 161	 2010–2015
Croatia	 Zagreb	 45.867	 16.033	 123	 2004–2015
Croatia	 Krizevci	 46.033	 16.556	 155	 2010–2015
Switzerland	 Adelboden	 46.500	 7.560	 1,320	 1990–1992 
					     2001–2006
France	 Segre-en-Anjou Bleu 	 47.473	 −0.556	 48	 2011–2018
	 (Angers weather station)	
Slovakia	 Hurbanovo	 47.867	 18.200	 115	 1999–2013
Slovakia	 Kosice	 48.669	 21.241	 231	 1999–2013
Slovakia	 Poprad-Tatry	 49.067	 20.250	 694	 1999–2013
Ukraine	 Kyiv	 50.400	 30.567	 167	 1972–2016
Ukraine	 Kharkiv	 49.967	 36.133	 155	 1960–1961 
					     2008–2012
England	 Bournemouth	 50.783	 −1.833	 11	 2002–2005
Russia	 Kursk	 51.767	 36.167	 246	 1962–2014
Russia	 Bryansk	 53.250	 34.317	 214	 2013–2015
Germany	 Marnitz	 53.317	 11.933	 80	 2008–2015
Russia	 Barnaul	 53.433	 83.517	 183	 2018–2020
Belarus	 Braslavskie Ozera 	 55.867	 26.500	 122	 2007–2015
	 (Daugavpils weather station)	

Country, region	 Site	 Longitude	 Latitude	 Altitude	 Years 
		  (°N)	 (°E)	 (m a.s.l.)	
Uzbekistan	 Tashkent	 41.311	 69.280	 480	 1976–1980
					     2011–2012
Crimea	 Yalta	 44.510	 34.240	 190	 1931–2022
Bosnia and Herzegovina	 Bihac	 44.800	 15.867	 246	 1976–1989
Croatia	 Daruvar	 45.600	 17.233	 161	 2011–2015
Croatia	 Zagreb	 45.817	 16.033	 121	 2005–2015
Croatia	 Krizevci	 46.033	 16.550	 138	 2011–2015
Switzerland	 Adelboden	 46.500	 7.567	 1,350	 1991–1992 
					     2002–2006
France	 Segre-en-Anjou Bleu	 47.681	 −0.872	 31	 2012–2018
Slovakia	 Kravany nad Dunajom	 47.767	 18.483	 110	 2000–2013
Slovakia	 Slanské Nové Mesto	 48.633	 21.517	 250	 2000–2013
Slovakia	 Hranovnica	 48.983	 20.317	 620	 2000–2013
Ukraine	 Kyiv	 49.744	 31.456	 138	 1973–2016
Ukraine	 Kharkiv	 50.000	 36.224	 155	 1961  
					     2008–2012
England	 Bournemouth	 50.783	 −1.883	 32	 2002–2005
Russia	 Kursk	 51.147	 36.430	 226	 1963–2014
Russia	 Bryansk	 53.243	 34.364	 216	 2014–2015
Germany	 Marnitz	 53.317	 11.933	 85	 2009–2015
Russia	 Barnaul	 53.347	 83.777	 159	 2019–2020
Belarus	 Braslavskie Ozera	 55.596	 27.054	 127	 2008–2015

Table S2. Geographical locations of phenological observation sites


