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Abstract 
Masanja, S.N., Shirima, D.D., Zahabu, E.M., 2025. Relationship between deadwood structural diversity and 
carbon stock along environmental and disturbance gradients in Tropical dry forests. Folia Oecologica, 52 (1): 
1–13.

Deadwood is a substantial component of forest ecosystems playing a vital role in maintaining ecosystem health 
and functioning. However, there is limited information on deadwood stand structure which encompasses at-
tributes such as type, quantities and distribution of deadwood pieces and how it is related to its biomass. This 
study examined the relationship between deadwood species structural diversity and carbon stock along differ-
ent environmental and disturbance factors in forest and woodland ecosystems. An agglomerative hierarchical 
clustering analysis was used to identify species communities, followed by indicator species analysis which 
was done to determine the species significantly associated with each community. Species richness, evenness 
and Shannon-Wiener diversity index were calculated to determine deadwood species diversity in both ecosys-
tems. Multimodel inference approach was used to analyse the relationship between deadwood carbon stock 
and diversity indices, soil properties, climate and proximity to roads and settlements. Three communities were 
identified from forest ecosystems while four communities were from woodland. Multimodel analysis found 
a positive significant relationship between deadwood carbon stock and species abundance, Shannon-Wiener 
diversity, soil moisture and proximity to roads in both ecosystems. These findings provide insights into con-
servation strategies that prioritize protection and restoration of ecosystems as carbon reservois. 
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Introduction

Worldwide, deadwood has emerged as a significant com-
ponent of terrestrial carbon pools (Moreno-Fernández et 
al., 2020) and potentially important biodiversity indicators 
(Humphrey et al., 2005). Deadwood is one of the structur-
al components of forest ecosystems playing a vital role in 
maintaining ecosystem health and functioning (Brocker-

hoff et al., 2017). The study of deadwood carbon stocks 
and their variability across different ecosystems has gained 
considerable attention due to its crucial role in understand-
ing global carbon cycling and mitigating climate change 
(Bauhus et al., 2018). 
 Diverse ecosystems including tropical dry forests and 
woodlands exhibit distinct vegetation compositions and 
disturbance regimes. Forest ecosystems generally feature 
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a higher density of tall trees with closed canopies, while 
woodlands have sparser tree distributions with more open 
canopies, supporting distinct community dynamics. For-
ests occupy 31% of the global land area and are among 
the richest ecosystems in terms of biodiversity and carbon 
pool (FAO, 2020). However, forest areas and their carbon 
pool have dramatically decreased due to the increasing 
rate of deforestation and changes in land use caused by 
agricultural expansion (Curtis et al., 2018). 
 The amount of carbon stored in a forest depends on 
various factors including forest structural diversity such as 
species composition, community assemblages, tree density 
and size distribution (Arasa-Gisbert et al., 2018; Gogoi et 
al., 2022) and are influenced by environmental factors such 
as temperature, precipitation and soil properties (Toledo et 
al., 2012). Soil properties such as organic carbon content, 
texture and moisture, affect the growth and distribution 
of plant species which in turn influences the overall struc-
ture and composition of forests (Sharma et al., 2018). 
 Human disturbances such as logging, agriculture 
expansion and infrastructure development can alter for-
est structure, consequently affecting deadwood dynam-
ics. Areas close to roads and human settlements are more 
prone to human-induced disturbances compared to inte-
rior forests (Alamgir et al., 2017). Human disturbance 
may add to more deadwood hence carbon stock by in-
creasing tree debris, but also may result in removal of 
standing and fallen deadwood, thus decreasing deadwood 
carbon stocks (Seidl et al., 2014). 
 In East Africa, Tanzania is one of the richest coun-

tries in terms of natural resources and biodiversity com-
prising of diverse vegetation types including extensive 
forest and woodland ecosystems (MNRT, 2015). There 
have been various efforts to link deadwood biomass 
with forest structural diversity (Hezron and Nyahongo, 
2021) along with environmental and land use gradients 
(Komposch et al., 2022). However, increasing human 
pressure on natural resource extraction has increased at 
an alarming rate leading to an increase in forest defor-
estation and degradation rates. Tanzania has experienced 
forest loss of 469,000 hectares per year between 2002 to 
2013 (URT, 2017) which also influence forest structural 
diversity and deadwood carbon stock. Understanding the 
influence of forest structure on deadwood carbon stock 
along environmental and disturbance gradients will pro-
vide insights into the management of dry forest ecosys-
tems.
 Therefore, this study assessed the influence of forest 
structure on deadwood carbon stock along environmen-
tal and disturbance gradients by exploring (1) deadwood 
species diversity and community composition in dry 
forests ecosystems (2) the relationships between envi-
ronmental (soil and climate) and disturbance (distance 
to the nearest road and human settlements) factors and 
deadwood carbon stock. While living trees play a critical 
role in forest dynamics, this research does not specifical-
ly examine the relationships between deadwood charac-
teristics and those of living trees. Instead, it emphasizes 
understanding deadwood as a standalone carbon pool and 
biodiversity component.

Fig. 1. Distribution of deadwood sample plots in Tanzania mainland.
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Materials and methods

Study area

Tanzania is located between 1º00’S and 12º00’S and be-
tween 30º00’E and 41º00’E (Fig. 1) at an altitude between 
358 m asl and 5,950 m asl. It lies on the east coast of Africa 
and is bordered by Kenya and Uganda to the north, Rwan-
da, Burundi, and the Democratic Republic of the Congo to 
the west, Zambia, Malawi, and Mozambique to the south 
and the Indian Ocean to the east. 
 Tanzania mainland has a mainly tropical climate but 
has regional variations due to topography. Temperature 
ranges between 10 °C and 20 °C during cold and hot sea-
sons respectively. The mean annual rainfall ranges from 200 
mm to over 2,000 mm per annum, with short rains from 
October to December and long rains from March to May.
 The country’s major forest types include deciduous 
miombo woodlands in the western, central, and southern 
parts, Acacia-Commiphora woodlands in the north, man-
grove forests along the Indian Ocean coast and closed 
canopy forests that grow on the ancient mountains of the 
Eastern Arc. These forests and woodlands are subjected to 
various disturbances, such as selective logging, slash and 
burning for agricultural activities and wildfires, which can 
affect their structure and composition.

Sampling design and data collection

Deadwood was surveyed across a range of forest and 
woodland ecosystems to assess its carbon stock, species 
richness and diversity. Data collection was designed to 
capture attributes directly related to deadwood, such as 
deadwood decay status, volume and associated environ-
mental factors. Although living tree characteristics were 
documented during broader forest inventory, these data 
were not analysed in the context of this study.
 This study employed the use of the National For-
est Resources Monitoring and Assessment of Tanzania 

Fig. 2. NAFORMA cluster design (black solid circles = plot).

(NAFORMA) sampling design which was double sam-
pling for stratification and optimal allocation of plots 
(Tomppo et al., 2014; MNRT, 2015). The National For-
est Resources Monitoring and Assessment (NAFOR-
MA) is the first forest inventory conducted to the entire 
Tanzania mainland and it was conducted between 2009 
and 2014. The first phase sample consisted of clusters 
of plots laid at distances of 5 km × 5 km over mainland 
Tanzania. The country was divided into 18 strata based 
on predicted growing stock, accessibility and slope. With 
different sampling intensities in each stratum, the second 
phase samples were systematically selected from the first 
phase sample using optimal allocation. Higher sampling 
intensity was allocated to strata with high variation and 
high predicted growing stock while low sampling inten-
sity was allocated to strata with low variation and low 
predicted growing stock.  
 Concentric circular plots of 15 m radius were used as 
the sampling units and plots were grouped into clusters as 
a measurement unit. The distribution of deadwood sample 
plots within the entire mainland Tanzania is presented in 
Figure 1 whereby, the number of plots in a cluster var-
ied from six to ten, depending on the accessibility of the 
plots. The distance between plots within a cluster was 250 
m (Fig. 2) while the distance between clusters varied by 
stratum, from 10 to 45 km. Measurements were taken for 
fallen deadwood and large branches which were within the 
radius of 15 m plot. These included length and diameter 
(top and bottom) for deadwood with diameter equal or 
greater than 10 cm. Deadwood diameters were measured 
by using tree calliper and lengths were measured by us-
ing tape measure. Identification of deadwood species was 
done using forest botanists. Each deadwood decay status 
class (either solid or rotten) was detected using a knife test.

Data analysis

All data were encoded in MS Excel and analysed by using 
R software, R v.4.1.1.

Deadwood carbon
Deadwood biomass was estimated as the product of dead-
wood volume and species-specific wood density. Volume 
was computed using Smalian formula and species-spe-
cific wood density values were sourced from the Global 
Wood Density database (Chave et al., 2009; Zanne et 
al., 2009), using the function getWoodDensity() in R. 
For those species-specific wood density values that were 
missing from the database, a default wood density val-
ue of 500 kg m–3 was used (IPCC, 2006). Irrespective of 
species, a default wood density reduction factor of 0.97 
was used for solid woods and 0.45 for rotten deadwood 
(IPCC, 2006). Deadwood biomass was converted into 
carbon stocks by multiplying with a carbon conversion 
factor of 0.47 (IPCC, 2006) and later aggregated into car-
bon stock density i.e. per ha for each plot.

Species community composition and deadwood diversity
All recorded deadwood species were identified, counted 
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and sorted to obtain their abundance values and species 
composition. Deadwood species dominance was deter-
mined by estimating Species Importance Value Index 
(SIVI). SIVI was computed as the sum of relative density, 
relative dominance and relative frequency of the species 
per plot (Beals, 1984). Cluster analysis was done to identi-
fy distinct deadwood species communities across each for-
est and woodland ecosystem. We computed Bray–Curtis’s 
distance matrix using deadwood species matrix data and 
then, hierarchical Ward’s minimum variance clustering 
was performed using Ward’s algorithm. Several clusters 
were identified based on Silhouette validation technique 
using function fviz_nbclust from the ‘factoextra’ R pack-
age (Thinsungnoena et al., 2015). Indicator species were 
identified using package ‘labdsv’, and then each commu-
nity was named after the two most dominant species based 
on high synoptic cover-abundance values (Teshome et al., 
2020). Shannon-Wiener diversity index (H’), evenness (J) 
and richness (S) were also calculated for each plot using 
the ‘vegan’ package.
Species Importance Value Index (SIVI) = Relative Density 
+ Relative Dominance + Relative Frequency (Eqn. 1),where-
by Relative Density is the number of individuals of a 
species divided by the total number of individuals of all 
species in the plot, Relative Dominance is the basal area 
of a species divided by the total basal area of all species 
in the plot, and Relative Frequency is the number of plots 
in which a species occurs divided by the total number of 
plots sampled.

Acquisition of environmental data  
Climatic data (annual mean temperature and annual mean 
precipitation) were downloaded from WorldClim site 
(https://www.worldclim.org) with a 30 arc seconds res-
olution. For consistency with the NAFORMA, we used 
historical climate data from WorldClim version 2.1 for 
the period 1970–2000 and this version was released in 
January 2020. This period provides a long-term historical 
baseline, which is valuable for examining species distribu-
tion patterns relative to climate. The soil data (soil organ-
ic carbon, soil moisture, and soil texture) were extracted 
from the Re-gridded Harmonized World Soil Database: 
ISRIC Data (International Soil Reference and Information 
Centre) https://data.isric.org at a spatial resolution of 30 
arc-seconds (approximately 1 km at the equator), which 
matches the resolution of the WorldClim climatic data we 
used. Consistent spatial resolution between soil and cli-
mate datasets allowed for accurate integration and com-
parison of environmental variables in our analyses. Val-

ues for all spatially interpolated climate and soil variables 
were extracted using QGIS software, sampled using the 
coordinates of the plot and averaged across plots for each 
forest and woodland ecosystem.

Acquisition of disturbance data  
This study focused on disturbance gradients related to hu-
man proximity, using the distance to roads and settlements 
as proxies for human-induced disturbance levels. The 
rationale is that areas closer to roads and settlements are 
often subject to higher human activities (such as logging, 
forest clearing) that impact deadwood accumulation and 
carbon dynamics. We obtained spatial data for roads and 
villages as shapefiles using road and settlement vector data 
from OpenStreetMap (http://download.geofabrik.de/afri-
ca/tanzania.html). Values for all spatially interpolated dis-
tances (the minimum distances between each deadwood 
plot and the nearest road or settlement) were extracted 
using QGIS software and sampled using the coordinates 
for each forest and woodland ecosystem. To quantify the 
relationship between disturbance gradients and deadwood 
carbon stock, we used the minimum distance from the plot 
to the nearest road as well as the minimum distance from 
the plot to the nearest settlement, assuming that shorter 
distances indicate higher disturbance intensity. 

Associations between deadwood carbon stock and 
forest structure along environmental and disturbance 
gradients
We determined ccollinearity among predictor variables i.e. 
forest structural variables (species abundance, evenness 
and Shannon-Wiener diversity index), environmental vari-
ables (annual mean precipitation, annual mean tempera-
ture, soil organic carbon and soil moisture) and disturbance 
variables (distance to the nearest road and settlement) by 
using the Variance inflation factor (VIF). Only predictor 
variable with VIF less or equal to 10 were retained for 
model fits (Chahouki and Zare Chahouk, 2010). Spe-
cies richness and soil texture (sand, silt and clay) were re-
moved from the model analysis due to high collinearity 
with other predictor variables. We used Multimodel infer-
ence approach to test the best variable combination out of 
all possible combinations and the final model was obtained 
after model averaging (Grueber et al., 2011). The predic-
tor variables were categorized into 3 groups (Table 1), en-
compassing various environmental variables, disturbance 
gradients and forest structural diversity variables.
 We fitted a global model using generalized additive 
model (gam) regression model with deadwood carbon 

Group Variables within Group Number of Variables

Forest structural variables Species abundance, evenness and Shannon-Wiener diversity index 3

Environmental variables Annual mean precipitation, annual mean temperature, soil organic 4 
 carbon and soil moisture 
Disturbance gradients Distance to the nearest road and distance to the nearest settlement 2
variables

Table 1. Variable groups, variables within group and number of variables in each group
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stock as a response variable against forest structural vari-
ables (deadwood species abundance, evenness and Shan-
non-Wiener diversity index), environmental variables 
(annual mean precipitation, annual mean temperature, 
soil organic carbon and soil moisture) and disturbance 
variables (distance to the nearest road and settlement) as 
predictor variables. Function dredge, implemented in the 
package ‘MuMIn’ (Barton, 2009) was used to generate 
a set of sub-models from the global model using the func-
tion get.models. Backward-forward stepwise model selec-
tion based on the Akaike Information Criterion (AIC) was 
done to identify optimal models from the global models 
(Zuur et al., 2009). A confidence set at a 95% cumulative 
weight was defined using the function get.models and the 
best final model was determined by model averaging using 
the function model.avg (Grueber et al., 2011). Estimation 
of variable importance when using this approach does not 
affect the accuracy of the model predictions (Koskikala et 
al., 2020). Thereafter, generalized linear models (GLMs) 
were employed to test for significant association between 
environmental variables and species community composi-
tion across the two ecosystems.

Results 

Deadwood species composition, richness and diversity

A total of 528 deadwood species belonging to 224 gen-
era and 77 families were recorded across all ecosystems. 
The most dominant families were Fabaceae (equivalent 
to number of recorded individuals 3,989), Caesalpiniace-
ae (equivalent to number of recorded individuals 2,717), 
Combretaceae (equivalent to number of recorded indi-
viduals 1,975), Phyllanthaceae (equivalent to number of 
recorded individuals 590) and Euphorbiaceae (equivalent 
to number of recorded individuals 514). The most com-
mon genera were Brachystegia (equivalent to individu-
als 2,237), Combretum (equivalent to individuals 1,071), 
Pterocarpus (equivalent to individuals 759), Julbernardia 
(equivalent to individuals 752), Terminalia (equivalent 
to individuals 536) and Acacia (equivalent to individuals 
508). The most dominant deadwood species in terms of 
SIVI were Brachystegia sp. (6.66), Julbernardia globiflora 
(4.65), Pterocarpus angolensis (4.02), Brachystegia spici-
formis (3.32) Dalbergia melanoxylon (2.63) and Brachys-
tegia bussei (2.58), Table S1. These species contributed to 
47.1% of the total weighted deadwood carbon stock (Table 
S1). In terms of each ecosystem, 199 deadwood species 
were unique to woodlands only, 128 deadwood species 
were found only in the forest ecosystem and 201 dead-

wood species occurred in both ecosystems. Higher dead-
wood species evenness was also observed in woodland 
(0.71) compared to the forest (0.66). Also, woodland had 
a higher Shannon-Wiener diversity value (4.47) compared 
to forest (4.12) (Table 2). 

Community composition

Three communities were identified from the forest eco-
system (Fig. 3A) while four communities were identified 
from woodlands (Fig. 3B), and most of the deadwood 
species were shared across communities. Species com-
munities were named based on the two most important 
deadwood species that occurred in the community, using 
species indicator value (Table S2; Table S3). The identi-
fied communities from forests were Anacardium occiden-
tale-Rhizophora mucronata (AR), Brachystegia sp.-Ptero-
carpus angolensis (BPa) and Pteleopsis myrtifolia-Milletia 
sp. (PM), Fig- 3A. The four communities identified from 
the woodlands included Brachystegia sp.-Diplorhynchus 
condylocarpon (BD), Dalbergia melanoxylon-Pteleopsis 
myrtifolia (DP), Julbernardia globiflora-Pterocarpus an-
golensis (JP) and Brachystegia spiciformis-Parinari excel-
sa (BPe), Fig. 3B. 
 From the forest ecosystem, the highest weighted 
deadwood carbon stock (0.0088 t C ha–1) was obtained 
from Pteleopsis myrtifolia-Milletia sp. (PM) community 
while the lowest deadwood carbon stock (0.000016 t C ha–1) 
was from Anacardium occidentale-Rhizophora mucronata 
(AR) community (Fig. 4A). In woodland ecosystem the 
highest weighted deadwood carbon stock (0.01447 t C ha–1) 
was obtained from Brachystegia spiciformis-Parinari ex-
celsa (BPe) community while the lowest deadwood carbon 
stock (0.0000157 t C ha–1) was from Brachystegia sp.-Dip-
lorhynchus condylocarpon (BD) community (Fig. 4B). 
 
Associations between deadwood carbon stock and 
forest structure along environmental and disturbance 
gradients

Multimodel results showed that, species abundance, Shan-
non-Wiener diversity index, soil moisture and the prox-
imity to roads had positive significant relationship with 
deadwood carbon stock in both ecosystems (Table 3; Fig. 
5). Results also showed that in forest, deadwood carbon 
stock of Brachystegia sp.-Pterocarpus angolensis (BPa) 
community was positively significant associated with 
soil moisture (Table 4; Fig. 6A). However, in woodlands, 
deadwood carbon stock of Julbernardia globiflora-Ptero-
carpus angolensis (JP) community was negatively signif-
icant associated with soil organic carbon (Table 4; Fig. 

Ecosystem Area (ha) Number of plots Species richness Species evenness Shannon-Wiener  
   (S) (J) diversity index (H’)
Forest   3,364,400 173 128 0.66 4.12
Woodland 47,257,200 553 199 0.71 4.47
Forest × woodland  201

Table 2. Species evenness and Shannon-Wiener diversity index in each ecosystem
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Fig. 3. Hierarchical dendrograms showing forest and woodland communities identified through clustering analysis. The x-axis 
represents plot codes while y-axis shows the dissimilarity index used for clustering. Figure 3A coloured rectangles indicate for-
est communities, 1. Anacardium occidentale-Rhizophora mucronata (AR), 2. Brachystegia sp.- Pterocarpus angolensis (BPa) 
and 3. Pteleopsis myrtifolia-Milletia sp. (PM). Figure 3B coloured rectangles indicate woodland communities, 1. Brachyste-
gia sp.-Diplorhynchus condylocarpon (BD), 2. Dalbergia melanoxylon-Pteleopsis myrtifolia (DP), 3. Julbernardia globiflo-
ra-Pterocarpus angolensis (JP) and 4. Brachystegia spiciformis-Parinari excels (BPe). 
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Fig.3. – Continued
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Fig. 4. Distribution of deadwood carbon stock among the identified species communities. Figure 4A from forests; Anacardium 
occidentale-Rhizophora mucronata (AR), Brachystegia sp.-Pterocarpus angolensis (BPa) and Pteleopsis myrtifolia-Milletia 
sp. (PM). Figure 4B from woodlands; Brachystegia sp.-Diplorhynchus condylocarpon (BD), Dalbergia melanoxylon-Pteleop-
sis myrtifolia (DP), Julbernardia globiflora-Pterocarpus angolensis (JP) and Brachystegia spiciformis-Parinari excelsa (BPe).

Estimates Value Std.Error z-value p-value
(Intercept) 0.002129 0.000595 3.566 0.00036
Species abundance 0.000126 0.000021 5.981 <0.05
Shannon-Wiener diversity index 0.002381 0.000829 2.864 ≤0.00419
Soil moisture 0.00048 0.000243 1.971 ≤0.04876
Distance to the nearest road 0.00009 0.000051 1.762 ≤0.07812

Table 3. A summary of averaged model estimates using multimodal inference approach

Fig. 5. Associations between deadwood carbon and species abundance, richness and soil organic carbon and soil moisture. 
Scatter points are raw data and the lines are predictions from the optimal averaged generalized additive model 
when other predictors are kept constant.
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6B) while deadwood carbon stock of Dalbergia melan-
oxylon-Pteleopsis myrtifolia (DP) community was posi-
tively significant associated with soil moisture (Table 4; 
Figure 6C). 

Discussion

The assemblages of species in ecological communities 
reflect interactions among organisms as well as between 
organisms and the abiotic environment. Species compo-
sition, especially the dominance of species from the fam-
ilies Fabaceae and Caesalpiniaceae, is a characteristic 
feature of woodlands in tropical ecosystems, including 
Tanzania, similar to the findings reported by (Giliba et 
al., 2011; Mwakalukwa et al., 2014). The higher values 
of species richness observed in this study, compared to 
previous studies in similar tropical woodland and forest 
ecosystems (Girmay et al., 2020; Jew et al., 2016), could 
be attributed to the greater sampling effort employed as 
well as ecological processes influencing species richness 
in these ecosystems. Additionally, the disturbance gradient 
quantified through proximity to roads and settlements may 
have influenced deadwood diversity, as human activities 
and environmental pressures can create heterogeneous 
conditions favourable for diverse deadwood substrates. 
However, we acknowledge that other ecological process-
es, such as tree mortality patterns and decomposition dy-
namics, though relevant, were not directly assessed in this 
study and warrant further investigation in future research. 
The difference in deadwood species richness observed 
between forests and woodlands where forests exhibited 
higher species richness compared to woodlands can be 
attributed to several factors. Forest ecosystems generally 
have more complex habitat structures, providing diverse 
microhabitats and supporting a wider variety of species. In 
contrast, woodlands, characterized by more open canopies 
and less structural complexity, may support fewer species 
overall. Additionally, environmental factors such as soil 
moisture and organic carbon content, which were found to 
differ significantly between ecosystems in this study, like-
ly contributed to these variations. Similar patterns have 
been reported by Mwakalukwa et al. (2014), highlighting 
the role of environmental heterogeneity in shaping species 

Table 4. A summary of models showing association between environmental variables and deadwood species communities 
across different vegetation types

Vegetation type Parameter Estimate Std.Error t-value p-value
Forest (soil moisture) (Intercept) 43.009 0.152 238.4 <0.05

Community BPa 0.701 0.368 – 1.906 <0.05
Community PM 0.031 0.263 – 0.119 0.905

Woodland (soil moisture) (Intercept) 41.987 0.164 256.4 <0.05
Community BPe 0.044 0.272 – 0.163 0.871
Community DP 0.404 0.185 – 2.181 ≤0.03
Community JP 0.369 0.211 – 1.752 0.08

Woodland (soil organic carbon) (Intercept) 1.835 0.0701 26.179 <0.05
Community BPe – 0.0073 0.1165 – 0.632 0.528
Community DP – 0.0436 0.0794 – 0.549 0.584
Community JP – 0.175 0.0902 – 1.944 <0.05

richness across different ecosystems.  
The Shannon-Wiener diversity values presented in 

this study are in line with other studies by (Girmay et 
al., 2020) who reported Shannon-Wiener diversity val-
ues ranging from 3.25 to 4.21 but, they are much higher 
than those of Shirima et al. (2011) who reported the Shan-
non-Wiener diversity values ranging from 1.05–1.25. High 
Shannon-Wiener diversity values reported in this study 
could be attributed to the country-wise coverage of this 
study as it included a very large sample size. Normally, 
Shannon-Wiener diversity values range between 1.5 and 
4.5 and rarely exceed 5 (Magurran, 2013). A threshold 
value of 2 has been indicated as minimum value, above 
which an ecosystem can be regarded as medium to highly 
diverse (Magurran, 2013). Therefore, the Shannon-Wie-
ner diversity values obtained in this study implies that 
woodland and forest in Tanzania are highly diverse eco-
systems. Nevertheless, the observed positive significant 
relationship between the Shannon-Wiener diversity index 
and deadwood carbon stock across ecosystems as illustrat-
ed in Fig. 5, highlights a general trend where ecosystems 
with more diverse species tend to have higher deadwood 
carbon stocks. However, this relationship may not be 
consistently positive or linear in every instance. This ap-
parent inconsistency could be due to ecosystem-specific 
variations such as differences in species composition, dis-
turbance regimes, environmental conditions and manage-
ment practices which might dampen the observable trend 
in the figure (Schuldt et al., 2023). For instance, some 
ecosystems might have dominant species with low wood 
density or fast decomposition rates, reducing deadwood 
carbon stock despite high diversity.

The identification of distinct communities provides 
a deeper understanding of the ecological dynamics and 
their unique characteristics. The variation in deadwood 
carbon stock among forest and woodland communities 
underscores the importance of different species as carbon 
sinks (Fig. 4A and Fig. 4B), standing out as a particu-
larly significant carbon reservoir. The cause of variation 
in deadwood carbon stock among species communities 
could be attributed to different micro-climates (Shirima 
et al., 2011), site-specific environmental conditions and 
disturbance history (Garbarino et al., 2015; Woodall 
et al., 2008). Moreover, the study by (Błońska et al., 
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Fig. 6. A) association between Brachystegia sp.-Pterocarpus angolensis (BPa) community and soil moisture; B) association 
between Julbernardia globiflora-Pterocarpus angolensis (JP) community and soil organic carbon; C) association between 
Dalbergia melanoxylon-Pteleopsis myrtifolia (DP) community and soil moisture.
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2019) discussed that, different species may lead to vari-
ations in resistance traits and nutrient limitations which 
slow down the rate of decomposition. 

The findings also revealed contrasting associations 
between deadwood carbon stock and soil properties across 
different forest and woodland communities. In forests, 
higher soil moisture was positively associated with dead-
wood carbon stock, likely because increased moisture 
slows microbial decomposition, allowing deadwood to 
persist for longer periods (Garbarino et al., 2015). Addi-
tionally, the study by (Brockerhoff et al., 2017), show-
ing that structurally heterogeneous forest stands, charac-
terized diverse size classes and species mixtures provide 
more niches for deadwood accumulation. In contrast, 
within woodland communities, deadwood carbon stock 
showed negative relationships with soil organic carbon, 
and positive relationships with soil moisture. These con-
trasting relationships highlight how the more open canopy 
and resource-limited conditions in woodlands influence 
the decomposition and persistence of deadwood different-
ly than in forests (Błońska and Lasota, 2017; Błońska et 
al., 2019). During the decomposition of deadwood, a por-
tion of the carbon is released into the atmosphere as carbon 
dioxide through microbial respiration, while the remaining 
carbon is incorporated into the soil organic matter. This 
process results in a gradual reduction in the total amount of 
deadwood present in the ecosystem and a corresponding 
increase in soil organic carbon content. 

Nevertheless, there was a notable pattern of higher 
deadwood carbon values in proximity to roads in both eco-
systems (Fig. 5). This pattern could reflect the influence 
of increased tree mortality rates along transport corridor 
edges due to anthropogenic disturbances (Austin, 2002).  
However, it is important to note that the history and man-
agement status of forests in this study were not explicitly 
documented, making it challenging to differentiate be-
tween unmanaged forests and those subject to prior anthro-
pogenic activities. In unmanaged forests, illegal harvest-
ing, selective logging and firewood collection would likely 
reduce deadwood amounts by directly removing biomass 
(Masek et al., 2011). In contrast, managed forests or areas 
with historical disturbances could exhibit an accumulation 
of fine woody debris following timber extraction or felling 
operations (Kechagioglou et al., 2022). These dynam-
ics suggest that the observed pattern near roads may result 
from a combination of human activities and legacy effects 
of past disturbances, which could contribute to both coarse 
and fine deadwood fractions depending on the intensity 
and type of disturbance (Mwakosya and Mligo, 2014). 
Additionally, the edge effects associated with roads can 
create microclimatic conditions that may stress trees, mak-
ing them more susceptible to insect infestations, pathogens 
or drought, further contributing to increased tree mortality 
and deadwood accumulation near transportation corridors 
(Kacholi, 2014).

Conclusion

Understanding species distribution patterns and communi-

ty structures within forest and woodland ecosystems high-
lights their ecological significance as potential indicators 
of ecosystem health and carbon sequestration capacity. 
The distribution of deadwood carbon stocks, species di-
versity and communities were shown to be associated with 
soil moisture, soil organic carbon and proximity to roads. 
These findings have implications for ecosystem manage-
ment and conservation emphasizing the need to maintain 
biodiversity and suitable habitat conditions to sustain 
deadwood carbon stocks. Proper management strategies 
including buffer zones or controlled access can promote 
the long-term health and resilience of these valuable eco-
systems and their vital ecosystem services. 
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