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Abstract
DIAMANTOPOULOU, M.J., 2022. Simulation of over-bark tree bole diameters, through the RFr (Random Forest Re-
gression) algorithm. Folia Oecologica, 49 (2): 93–101.

The diffi culty of locating and measuring the over-bark tree bole diameters at heights that are far from the ground, 
is a serious problem in ground-truth data measurements in the fi eld. This problem could be addressed through the 
application of intelligent systems methods. The paper explores the possibility of applying the Random Forest re-
gression method (RFr) in order to assess, as accurately as possible, the size of the tree bole diameters at any height 
above the ground, considering data that can be easily measured in the fi eld. For this purpose, diameter measure-
ments of pine trees (Pinus brutia Ten.) from the Seich–Sou urban forest of Thessaloniki, Greece, were used. The ef-
fectiveness of the Random Forest regression technique is compared with the results of non-linear regression models 
that fi tted to the available data and evaluated. This research has shown that the RFr method can be a reliable alter-
native methodology in order to receive accurate information provided by the model, saving time and effort in fi eld.
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Introduction

The measurements of trees are fundamental in the practice of 
forestry and forest science. The measurements are used both to 
understand the forest dynamics and to ensure that it is properly 
managed. The size of the tree bole diameters, at various heights 
from the ground, can outline the overall growth of the tree 
trunk. The knowledge of the diameter dimensions across the 
tree bole provides the necessary information needed for the ac-
curate volume computation of the standing tree boles, using ex-
isting theoretical cross-sectional formulas, such as Smalian’s, 
Huber’s, Newton’s methods, etc. (AVERY and BURKHART, 2002; 
VAN LAAR  and AKÇA, 2007; WEST, 2009). However, the diffi -
culty of locating and measuring over-bark tree bole diameters 
at many heights that are far from the ground is a well-known 
subject. For this reason, the problem of fi nding appropriate es-
timation models for diffi cult-to-measure biological variables, is 
a fi eld of intensive research in forest science.
 The knowledge of the size of the diameters of a stand-
ing tree bole is essential, contributing directly and substantially 

to the accurate estimation of the tree bole volume, which de-
pends on the number of known diameters at various heights. 
Moreover, this knowledge indirectly contributes to the descrip-
tion of the structure of the forest sections (MATIS, 2004; WEST, 
2009), while, at the same time, provides an essential informa-
tion for the proper management of the forest ecosystem. 
 The most widespread methodology of producing es-
timation models is through the application of the regression 
analysis technique (DRAPER and SMITH, 1998; KOULELIS and IO-
ANNIDIS, 2021). It is known that regression models give estima-
tion accuracy with relatively small estimation errors. However, 
the prerequisite conditions for the application of the theory 
of regression modeling should be approached by the data in 
hand, with suffi cient accuracy (DRAPER and SMITH, 1998; ARK-
ES, 2019). That is, problems that arise should be identifi ed and 
addressed, such as: a) the unstable estimation of regression co-
effi cients, b) incorrect decisions of parameters hypothesis tests, 
c) incorrect signs of regression coeffi cients, d) biased selection 
of variables of the model, e) the lack of observation indepen-
dencies, etc. (RATKOWSKY, 1990; DRAPER and SMITH, 1998). 
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 Due to its importance, the study and the construction 
of taper functions is a very interesting topic in forest research. 
Till today, the proposed taper models included polynomial, 
sigmoid, principal component analysis (PCA), and linear 
mixed functions, while contemporary machine learning (ML) 
approaches being explored (SALEKIN et al., 2021). According 
to the use of primary data from pine trees, the Max and Bur-
khart segmented taper equation under the nonlinear mixed-ef-
fects modeling technique was extensively used (TRICANDO 
and BURKHART, 2006; ÖZÇELIK and ALKAN, 2020). NICOLΕTTI 
et al. (2020) evaluated the accuracy of bivariate and general-
ized linear mixed modeling in the representation of the Pinus 
taeda L. trunk taper, while many researchers tested paramet-
ric and semi-parametric models for constructing reliable taper 
models (ÖZÇELIK et al., 2016; ALGERA et al, 2019; MARCHI 
et al., 2020). As a step further, the scientifi c community that 
conducted research in this area, tested nonparametric mod-
eling approaches, such as machine learning techniques and 
reported that it worth considering these methods as reliable 
alternatives to traditional taper-based equations (LEITE et al., 
2011; NUNES and GÖRGENS, 2016; ÖZÇELIK et al., 2019).    
 When biological data are analyzed and modeled, such 
as data from tree measurement in the forest environment, the 
violation of the regression modeling prerequisites is a fre-
quent phenomenon constituting a serious obstacle in fi nding 
a statistically reliable, and at the same time accurate, estima-
tion model. In addition, the need of the specifi cation of the 
appropriate form of the regression model that can accurately 
describe the data in hand, is a diffi cult and time-consuming 
requirement that has to be successfully addressed. For these 
reasons, the forest scientifi c research has focused on the ap-
plication of new modeling methods, such as that of artifi cial 
intelligence systems (Artifi cial Intelligence, AI) and their 
comparative evaluation with the more classic modeling meth-
ods that were widely used and are still used today, such as the 
theory of regression analysis, (DIAMANTOPOULOU, 2005; DIA-
MANTOPOULOU et al., 2009; DIAMANTOPOULOU et al., 2018; 
ÖZÇELIK et al., 2019; BAYAT et al., 2020; BOROUGHANI et al., 
2022; GÜNER et al, 2022), in order to determine their useful-
ness in solving problems of forest research.
 As a part of AI, the algorithm of Random Forest re-
gression (RFr) technique (BREIMAN, 2001; SEAGAL, 2003; 
PRASAD et al,.2006; CUTLER et al., 2012; HASTIE et al., 2017), 
can be used to solve the estimation values of continuous 
variables. This algorithm constitutes an ensemble supervised 
machine learning model, which makes use of the decision 
trees learning process to optimize the learning procedure. It 
is hoped that the application of this modeling approach ac-
cording to the simulation of ground-truth data of pine trees 
(Pinus brutia Ten.) from the suburban forest of Thessaloniki, 
will offer a general alternative reliable solution to the problem 
of accurate estimation of diameters at any height of the bole of 
standing trees. As a valuable landscape conifer species, pine 
has received considerable attention by many researchers (TRI-
CANDO and BURKHART, 2006; NICOLΕTTI et al., 2020; ÖZÇE-
LIK and ALKAN, 2020; BARNA et al., 2020) 
 The aim of this work is, on the one hand, to develop a 
reliable estimation model by using the random forest regres-
sion technique and, on the other hand, to compare its perfor-
mance with the nonlinear regression models adaptation to the 
data, which were developed in order to estimate the diameters 
of the pine (Pinus brutia Ten.) trunks at any height from the 
ground. Finally, the advantages and disadvantages offered by 
each modeling method are discussed. 

Materials and methods

A total sample of 94 pine trees (Pinus brutia) from the Seich–
Sou suburban forest of Thessaloniki, Greece, were measured. 
This forest is an almost pure planted pine forest. Its central 
location of the study area can be found using the geograph-
ic coordinates 40°37’33.0’’N and 23°00’45.0’’E. Systemat-
ic sampling was used to ensure that all different site classes 
would be included. In a 1:10,000 map of the forest, parallel 
lines were marked at equal distances, using the WS-NE direc-
tion and 42o exposure. A total of 94 points were systematically 
selected on the map lines. Then the relative trees were located 
on the ground using a GPS instrument. Tree measurements 
included stump diameter (0.3 m height from ground, d0.3), 
and diameter at breast height (1.3 m height from ground, d1.3), 
both measured by Finnish caliper, all diameters at one-meter 
height interval above breast height (d2.3, d3.3, d4.3, d5.3, d6.3, d7.3, 
d8.3 and d9.3) measured by Speigel Relaskop and total height 
(htotal) of the sampled trees, measured by the Blume-Leiss 
hypsometer (PHILIP, 1994; AVERY and BARKHART, 2002). After 
the measurements were completed, a sample of size n = 445 
rows of data was obtained.
 To investigate and to construct the most appropriate, 
for our data, estimation model, in the case of modeling using 
the random forest regression algorithm, the sample of n = 445 
lines of data was divided using random numbers into two dis-
tinct parts: a) the sample of the fi tting data which constitutes 
the 90% of the total lines of data (n1 = 401) and (b) the testing 
sample of the of the constructed model, which consist of the 
remaining 10% data lines (n2 = 44). (Fig. 1). This is a reli-
able procedure that has been followed by many researchers 
(MOORE  et al., 1996), in order to ensure that the predictive 
ability of the constructed models is adequate.

Fig. 1. Random Forest regression (RFr) structure.

 In the case of the nonlinear regression models devel-
opment, the above separation was not applied because it does 
not affect the training evaluation of the regression model in 
the way applied to intelligent learning models, while this han-
dle could lead to a loss of additional information (HIRSCH, 
1991).
 In order to establish a regression model that will be 
able to estimate the over-bark diameter at any height of the 
standing tree bole, a large number of multiple and nonlinear 
regression equations were adjusted to the data, using the sta-
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tistical package IBM SPSS (2019), with the dependent vari-
able (di/d1.3) and independent variables the stump diameter 
(d0.3), the total height (htotal) and the height (hdi) of the diameter 
in question This diameter value (di) is expected to be estimat-
ed by the constructed model. Both the Lilliefors statistical test 
of normality (LILLIEFORS, 1967), and the normal probability 
graphics were used to examine the normality of the dependent 
variable. Among the nonlinear regression models investigat-
ed, the logistic (1) model and the Gompertz (2) model (RAT-
KOWSKY, 1990) that showed the best fi tting performance to the 
available data, were:

(1)

(2)

where θi are the asymptotic regression coeffi cients.
 Due to the heterogeneity of the variance error detect-
ed for the dependent variable, only weighted nonlinear least-
squares regression was used. The investigation of the proper 
value of the weighted factor was applied by the use of the 
maximum likelihood estimation method (MLE) (IBM SPSS, 
2019) in the range of [-3,3] values by 0.1 (BI and HAMILTON, 
1998), Finally, the Levenberg-Marquardt algorithm (RAT-
KOWSKY, 1990) was used for optimization. 
 Because of the bias detected on the least squares’ as-
sumptions and the relatively high error values of estimates 
of the non-linear regression models, the Random Forest 
(BREIMAN, 2001), which is a non-parametric predictive meth-
odology, was used as an alternative procedure to regression 
analysis. The Random Forest regression algorithm (RFr) is a 
supervised machine learning algorithm, that it is based on the 
ensemble optimization procedure from decision trees follow-
ing a random way. That is, RFr model combines the estima-
tions from multiple uncorrelated models in order to produce 
more accurate estimations. In our case, each decision tree was 
optimized using random sample both from the fi tting data set 
and the available predictors (Fig. 1). Within the RFr, the in-
dividual decision trees had not interacted each other, but they 
were optimized separately. Finally, the random forest estima-
tion was calculated as the average of the estimations produced 
by the optimization of the decision trees included in the analy-
sis (Fig. 1). In order to construct the RFr model, the technique 
of bootstrapping has been followed. Bootstrapping (HASTIE 
et al., 2017) is a sampling technique in which subsets of ob-
servations, under replacement, were created from the original 
dataset. This technique is also referred to as Bagging.
 Each individual regression tree consisted of a con-
nected fl owchart, where there was a unique starting node from 
which two edges (branches) start and end at “children” nodes 

that come from the parental nodes. A condition of satisfaction 
has been settled, for each node. If this goal was not achieved, 
the process moved on to a new hub and new “children”. By 
working in that manner, the RFr algorithm presents an im-
portant advantage: it avoids overfi tting of the fi nal model. 
However, the main disadvantage of the method is the lack of 
extrapolation. That is, it cannot produce reliable predictions 
for the dependent variable beyond the range of the predic-
tors’ values the model used in its training phase. The learning 
of the RFr model was achieved by using libraries of scikit-
learn (PEDREGOSA et. al., 2011) and the Python programming 
language (VANROSSUM and DRAKE, 2011, PYTHON SOFTWARE 
FOUNDATION, 2022). 
 For the evaluation of the non-linear regression mod-
els and the RFr model, the following goodness of fi t mea-
sures were used: 1) the correlation coeffi cient (R) between 
the actual values and the corresponding values of the model, 
2) the maximum absolute error (MaxAE) between the actual 
values and the corresponding values of the model, 3) the per-
centage relative error (RE%) of the estimates, as a measure 
of accuracy of the model, 4) the root of the average square 
error (RMSE) between the actual values and the estimated 
values from the model and 5) the Furnival’s (FI) index, in or-
der to derive the precision obtained by the weighted non-lin-
ear models in terms of the unweighted dependent variable. 
The smaller the FI index value, the better adaptation of the 
model to the data received (FURNIVAL, 1961). Furthermore, 
the exploration of the normality of the residuals derived by 
the models, was made using the test statistic of the Lilliefors 
test. It was calculated by the formula:

Ti=sup|(F * (x) - S(x)|,                                                 (3)

where F * (x) is the standard normal distribution function 
and the S(x) is the empirical distribution function of the 
transformed (xi) values under the transformation zi = (xi-x) /s, 
where x is the sample mean and s is the standard deviation of 
the xi values. 

Results 

The descriptive statistics for the stump diameter (d0.3), the 
breast height diameter (d1.3) and the total height (htotal) of the 
trees for the total data set, are given in Table 1. 
 Because of the non-homogeneity of the error variance 
of the dependent variable (MENG and TSAI, 1986), weighted 
nonlinear least-squares regression was used. From explor-
atory graphing of d1.3 against the dependent variable and the 
investigation of the proper value of the weighted factor us-
ing the maximum likelihood estimation method (MLE) (IBM 
SPSS, 2019) in the range of [-3,3] values by 0.1 resulted to 
variance proportional to the 0.2 power of the d1,3. Thus, the 

weighting factor used was                      .

  Mean standard Variable Arithmetic mean  error Maximum value  Minimum value Variance

d0.3 (cm) 18.93 0.3045 39.0 9.0 41.25
d1.3 (cm) 15.02 0.3191 38.5 6.0 45.31
htotal (m)   6.95 0.0848 12.0 3.3   3.20

Table 1. Descriptive statistics for the raw data set
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 According to the weighted dependent variable, the 
exploratory data analysis conducted showed accepted devia-
tion from normality. As can be seen in the relative Q-Q plots 
of Fig. 2, the values of the weighted variable are close enough 
to the straight line that represents the normality (Fig. 2-(2)), 

Fig. 2. Normal Q-Q plots (1 and 2) and box-plots of the un-
weighted (3a) values and the weighted (3b) values of the de-
pendent variable, respectively.

                                                  Non-linear regression weighted models
 
 Weighted logistic model  Weighted Gompertz model

Regression 
coeffi cient Value (SE) Lower limit Upper limit   Value (SE) Lower limit Upper limit

θ1   1.184 (0.103)   0.982   1.387   1.108 (0.081)   0.949   1.268
θ2 –0.024 (0.005) –0.035 –0.014   0.410 (0.066)   0.279   0.540
θ3   0.302 (0.021)   0.262   0.343    0.015 (0.004)   0.008   0.022
θ4 –0.638 (0.020) –0.676 –0.599 –0.192 (0.026) –0.244 –0.141
θ5 --- --- ---    0.381 (0.040)   0.301   0.460

Table 2. Regression coeffi cient values, and 95% confi dence intervals (a = 0.05), for the weighted equations: (1) Weighted lo-

gistic model                                                                     , and (2) Weighted Gompertz model                                                       

while the unweighted values of the same variable show a S 
shape pattern (Fig. 2-(1)), indicating deviation from the re-
quired normality. The box-plots of Fig. 2-(3) showed the cor-
rection of the heterogeneity of the variance of the weighted 
dependent variable, as well.
 Many multiple and nonlinear regression models tested 
to fi t the available data set, The models that were best adapted 
to the data were the weighted logistic model and the weighted 
Gompertz model (Table 2). The signifi cance tests of the regres-
sion coeffi cients for the two equations are given in Table 2.
 According to the learning process of the random for-
est regression model, this was achieved using 100 regression 
trees (Fig. 3) whose number was selected after testing dif-
ferent numbers of trees ranged from 2 to 150. It was found 
that after the use of the 100 trees, there was no signifi cant 
improvement in the model’s average estimation error.

Bootstrap Aggregation

The size of subsets created for bagging may be less than the 
original set. In our case, in order not to miss any of the avail-
able information, the size of the subsets used is the same as 
that of the original set. In this technique a generalized result is 
obtained by combining the results of various predictive models. 
 The bootstrap method applied for each decision (re-
gression) tree training data selection, so the procedure to be 
completely randomized. Finally, the number of the 10 branch-
es was selected as the depth of the tree (Fig. 3), in order to avoid 
the learning over-parameterization of each decision tree.
 The evaluation criteria for the non-linear models and 
the Random Forest regression model for the total sample of the 
445 lines, are given in Table 3.
 According to the weighted nonlinear models, Furni-
val’s index was used to transform the error of the weighted 
equations (transformed error values). In this way, the weighted 
error would be comparable to the corresponding error of the 
RFr model. 
 As shown in Table 3, all statistical evaluation metrics 
are better for the RFr model as compared to the weighted non-
linear models, while both the non-linear equations gave simi-
lar results. In particular, the RMSE value for the RFr model, is 
8.18% less than the corresponding error of the logistic model, 
while the RE% value of the estimates that used as a measure 
of accuracy of the models, shows that the RFr model’s es-
timates are 7.89% more accurate than the estimates derived 
from the logistic model.
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Fig. 3. Random Forest regression architecture.



98

Table 3. Evaluation statistics for the three models, the logistic (1), the Gompertz (2) and the Random forest regression (RFr) mode

aAnti-log of the reverse derivative of the model’s dependent variable, in terms of the untransformed variable values. It is a 
necessary quantity for the calculation of the FI index.

Model Dependent var. R MaxAE RE% RMSE Factora FI

Logistic (1) di /d1.3·wi 0.8928 0.3404 16.16 0.0611 1.6921 0.1034
Gompertz (2)  di /d1.3·wi  0.8897 0.3421 16.47 0.0697 1.6921 0.1049
RFr di /d1.3  0.9696 0.2790 8.27 0.0561 1  0.0561

Fig. 4. Errors dot diagrams (a and c) and errors histograms (b and d) for the non-linear regression models and for the Random 
Forest regression model (e and f), respectively.
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 The residual analysis of the three models revealed 
normally distributed errors, with a small and homogeneous 
variance, which supports the statistically correct construction 
of the models (Fig. 4).
 The same result was derived from the Lilliefors test 
for normality. The SPSS package was used for conducting 
the analysis. The null hypothesis of normality for the resid-
uals for the three models, was not rejected in the signifi cant 
level of a = 0.05, with signifi cance of the test for the resid-
uals, equals to 0.200 (Sig. = 0.200) of all tested models.

Discussion 

Measuring the diameter values of a standing tree bole, at 
any height from the ground, is a non-trivial task that re-
quires substantial fi eld effort. The knowledge of the accu-
rate values of these diameters enables, not only the reliable 
tree volume computation, but also the knowledge of the 
structure of the forest MATIS, 2004; WEST, 2009, resulting in 
their sustainable management (NANOS and MONTERO, 2002). 
In this paper, the random forest (Random Forest regression, 
RFr) method was applied, and a comparative evaluation 
with the more classic modeling approach such as the non-
linear regression methodology, followed. The necessity of 
applying an intelligent system method arises from the fact 
that it has the ability to overcome problems in forest data, 
such as nonlinear relationships, non-Gaussian distributions, 
noise in the data, and it appears promising as an alternative 
to the traditional regression models in many forest model-
ing applications. This fact, combined with the requirement 
of the knowledge of the appropriate form of the regression 
equation, which will be able to reliably describe the primary 
data, makes the application of the regression methodology, 
diffi cult and time-consuming. Furthermore, nonlinear re-
gression models’ convergence relies on the good initial val-
ues for the parameters of the nonlinear models, which needs 
further effort by the modeler. On the other hand, intelligent 
systems, such as the random forest regression methodology, 
have the ability to use the primary data without any pre-
conditions and they do not require by the modeler to know 
the form of the model which can reliably describe the data. 
The system itself creates the model. However, the appro-
priate values of the intelligent model parameters, have to 
appropriate be selected. For this, iterative process of learn-
ing is used, with different parameter values and different 
combinations of them. At the end, the fi nal choice of the 
most appropriate parameter values leads to the most accu-
rate learning. In particular, for the case of the RFr model, 
it was required to select the appropriate number of decision 
trees and to determine the complexity of each of these trees. 
Random Forest regression technique appeared more fl exi-
ble for the stem diameter prediction than the logistic and the 
Gompertz non-linear regression models. The results of this 
research were supported by the fi ndings of many research-
ers that evaluated the performance of many machine learn-
ing methods, such as artifi cial neural metworks (SOARES et 
al., 2011) or random forest regression (NUNES and GÖRGENs, 
2016) in modelling stem taper. Furthermore, the Random 
Forest technique has not prerequisites, requires little con-
fi guration and at the same time can produce models with-
out overtraining (PRASSAD et al., 2006). According to the 
tree taper modeling, until now, there are limited research 

results from the Random Forest technique applications in 
forest research. Nevertheless, the insights derived from the 
conducted research in this area, lead to the superiority of 
this machine learning method, as compared to other con-
ventional methods.  

Conclusions

The ability of the random forest regression model to assess 
more accurately as compared to nonlinear regression models, 
the diameters at any height of the tree bole, showed that this 
intelligent process of modeling learning can be successfully 
applied to forest data. 
 It also showed that the model is generic and can be 
safely used to estimate the tree bole diameters at any height 
from the ground. This concluded using primary data from 
pine trees measured in the Seich–Sou suburban forest of Thes-
saloniki, Greece. It is worth mentioning that the constructed 
random forest regression model can be safely used within the 
range of the model’s construction primary data. 
 Despite the fact that the random forest regression 
model does not have the form of a conventional model, its 
application to the forest primary data of Pine trees from the 
suburban forest of Thessaloniki offered an alternative reliable 
solution to the problem of accurate estimation of diameters at 
any height of the trunk of the standing trees. 
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