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Abstract
Gašová, K., Kuklová, K., Kukla, J., 2017. Contents of nutrients and arsenic in litterfall and surface humus 
in mature nudal beech stands subjected to different emission-immission loads. Folia Oecologica, 44: 11–19.

The aim of the paper was to compare the litterfall and surface humus (Oo) quality in nudal beech stands with 
different emission-immission load from the Al smelter Žiar nad Hronom. The study was carried out in the 
Kremnické vrchy Mts (control stand, 18 km from the emission source) and the Štiavnické vrchy Mts (stressed 
stand, 1.5 km from the emission source), both in Central Slovakia. The contents of arsenic and nutrients (Cat, 
Mgt, Kt, Nat), with exception of calcium in the beech litterfall from the stressed stand were markedly higher 
(by 4.3%, 23.9%, 2.1% and 87.9%, respectively) compared to the samples taken from the control plot. On the 
contrary, the surface humus samples (with the exception of Na in the necrotic Oon subhorizon) from control 
plot were richer in nutrients. However, significant differences (p < 0.01) between the plots were observed for 
Ca content in the litterfall as well as in the surface humus. The concentrations of As in Oo samples from the 
stressed stand mainly increased with the organic horizon depth (mg kg–1): necrotic Oon 1.10 < fermentation 
Oof 3.1 < humification Ooh 55.6. The results showed, that As amounts detected in subhorizon Ooh and in 
beech litterfall from the stressed stand were higher than the limit values, thus indicating that the environment 
of the Žiar territory is exposed to persistent negative impacts of industrial activities.
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Introduction

Litterfall is a fundamental component in nutrient cy-
cling, and it primarily means the transfer of organic 
matter and mineral elements from vegetation to the soil 
surface (Vitousek and Sanford, 1986). It serves as an 
input-output system for nutrients, and for controlling 
the rates at which forest litterfall and decays processes 
regulate energy flow, primary productivity and nutrient 
cycling in forest ecosystems (Liao et al., 2006). For ex-
ample, nutrient contents in the litterfall represent annu-
ally per hectare approximately 40–55 kg of N, 2–3 kg 

of P, 7–16 kg of K, 41–73 kg of Ca and 6–7 kg of Mg 
in young oak stands in the Czech Republic (Novák et 
al., 2014). Forest stands and other plant vegetation af-
fect physical, chemical and biological soil properties, 
both directly and indirectly. Differences in the litterfall 
quality are reflected in the properties of the upper soil 
layers and the surface humus, which has been proved 
by studies by several authors (Neirynck et al., 2000; 
et al., 2002, 2003; Bieńkowski et al., 2006; Wulf and 
Naaf, 2009; Langenbruch et al., 2012, etc.). Decom-
position is very important in the biochemical nutrient 
cycle, in which the nutrients are mineralized and turn 
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again available to plants (Šimková et al., 2014). The 
study of Xiaogai et al. (2013) revealed, that the nutri-
ent content in soil positively correlates with the litter 
substrate quality, showing that higher amounts of soil 
nutrients are related to a good quality of litterfall, and 
lower contents to a poor litter quality. 

Industrial and agricultural procedures have re-
sulted in an increased mobilisation and deposition of 
potentially toxic metals, which presents a major threat 
to the environment and to the human health (Shotyk 
et al., 1998; Novák et al., 2003). From an ecological 
point of view, the acid rains considerably affect the soil 
properties. The declining value of soil reaction leads to 
toxic elements release (Dubová and Bublinec, 2006). 
The environment quality in the Žiarska kotlina basin 
is considerably influenced by industry and agriculture. 
The long-term production by the Al smelter SNP Ltd 
caused that the soil in the central part of region was 
contaminated anthropogenically. Air pollutants from 
industrial plants also appear to be significant sources of 
soil pollution and there is also noticeable soil contami-
nation caused by traffic pollutants along the transport 
corridors (Izakovičová et al., 1998). 

Despite the pollutants-reducing measures imple-
mented, the damage to the surrounding environment 
seems a long lasting problem (Slovalco, 2014). In 
general, aluminium smelters emit into the environment 
many substances: fluorine compounds, aluminium, poly-
cyclic aromatic hydrocarbons (PAH), polychlorinated 
dibenzo-p-dioxins, dibenzofurans, and traces of heavy 
metals (Wannaz et al., 2012; Jamnická et al., 2007). 
Arsenic, one of the trace metals, creates adverse effects 
on the environment and on human health, due to its tox-
icity and bioaccumulation. The major cause of human 
As uptake is through drinking water contaminated from 
either natural geological sources or from anthropogenic 

activities like mining, agricultural sources, combustion 
processes and metal production (Adriano, 2002). 

Several studies from the Slovenské stredohorie 
Mts show that the available forms of soil macronutri-
ents were higher in the control beech stand (Kremnické 
vrchy Mts) compared with the stressed stand (Žiar nad 
Hronom), with the differences significant for Ca and 
Mg. In the plant assimilatory organs, somewhat high-
er macronutrient contents were found in the stressed 
stand, with the exception of Ca (Kuklová et al., 2015). 
Pollutants wash out the base cations (Ca, Mg, K, Na) 
from the top soil layers and accelerate the primary 
mineral weathering. The decline in soil organic matter 
and in available nutrients indicate severe devaluation 
and extensive soil degradation processes in the Slovak 
Republic (Kobza and Gašová, 2014). Therefore, the 
objective of this study was to verify whether different 
immission loads from the Al smelter affect the (1) mac-
ronutrient (Cat, Mgt, Kt, Nat) and (2) arsenic contents 
in litterfall and in surface humus (Oo) in mature nudal 
beech stands. 

Materials and methods

Study site

The research was performed on two monitoring 
plots situated at different distances from the emission 
source – the Al smelter Žiar nad Hronom. The monitor-
ing plot (MP) Žiar nad Hronom (stressed plot) is lo-
cated at a distance of 1.5 km from the emission source; 
the Ecological Experimental Stationary (EES) Krem-
nické vrchy Mts (control plot), 18 km from the emis-
sion source (Fig. 1). 

Fig. 1. Location of the research plots and the emission source. 

Source: Google maps. Adjusted by Gašová
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The description of the nudal beech forests and cli-
matic characteristics on the study plots is in Table 1. 
The plots are situated in the 3rd forest altitudinal zone, 
the temperate climate region with an average annual 
temperature of 6–7 °C (EES Kremnické vrchy Mts) and 
7–8 °C (MP Žiar nad Hronom) and an average annual 
precipitation of 700–800 mm on both plots (Miklós et 
al, 2002). The stand forming species is mono-dominat-

ing Fagus sylvatica L. In the undergrowth synusia of 
both phytocoenoses, mesotrophic herb species domi-
nate, which is characteristic for the forest type group 
Fagetum pauper (Zlatník, 1976). The pHH2O value of 
soil (0–5 cm) on the MP Žiar nad Hronom (4.6–4.7) 
is approximately by one unit lower in comparison with 
pHH2O on the EES Kremnické vrchy Mts (5.8–6.3) 
(Kuklová et al., 2015).

 
Table 1. Basic information on studied forest ecosystems 
 

Geobiocenoses G1 G2 

Study site MP Žiar nad Hronom EES Kremnické vrchy Mts 

Geographic 
coordinates 48°32´01´´, 18°51´53´´ 48°38´08´´, 19°04´18´´ 

Altitude (m) 450 500 

Exposition NNW WSW 

Slope (°) 5–10 15–20 

Vegetation 
altitudinal 

zone 
3rd oak-beech 

Edaphic-
hydric order/ 

suborder 

Waterlogged/ 
alternately waterlogged Leading/ normal 

Edaphic-trofic 
order/ 

interorder 
A/B hemioligotrophic B mesotrophic 

Group of 
forest 

geobiocoen 
types 

Fagetum pauper superiora Fagetum pauper inferiora 

Stand age 
(years) 90 110 

Stand density 0.7–0.8 0.8 

Stand canopy 
(%) 90–100 90 

Parent rock Rhyolitic tuff, tuffite Andesite tuffaceous agglomerates 

Soil 
type/subtype Stagnic Cambisol (WRB)  Andic Cambisol (WRB)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Basic information on studied forest ecosystems

Data collection

On each monitoring plot, there were diagonally in-
stalled 5 litterfall traps, each with a capture area of 0.5 
m2 located at a height of about 1.5 m above the ground. 
The litterfall was sampled depending on the physiologi-
cal state of the beech stand and on the dynamics dying 
and falling away. The sampling was dated to: 1 Septem-
ber 2014, 15 September 2014, 24 September 2014, 16 
October 2014, 31 October 2014, 12 November 2014, 1 
December 2014, 15 December 2014.

The soil units were determined and classified ac-
cording to the Societas pedologica slovaca (2014) 
and the IUSS Working Group WRB (2014). The sur-
face humus samples were taken from the subhorizons 
Oon – necrotic, Oof – fermentation, Ooh – humifica-
tion, on square miniplots (0.1 m2), in three random 
repetitions on a plot. The samples were collected from 
patches with predominant F. sylvatica species. The 
thickness of Oo varied: plot G1 (MP Žiar nad Hronom) 
Oon: 2–3 cm, Oof: 1–2 cm, Ooh: 1 cm, plot G2 (EES 
Kremnické vrchy) Oon: 2 cm, Oof: 1–2 cm. 
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The dry weight was obtained by drying the sam-
ples for 48-hours at a temperature of 80 °C to a constant 
weight measured with a precision of 0.002 g. The total 
content of As in samples was determined by an AAS-
GTA using a Thermo iCE 3000 Series. Chemical anal-
ysis of arsenic was performed at the Central Forestry 
Laboratory of the National Forest Centre in Zvolen. 
Concentrations of Cat, Mgt, Kt, and Nat were obtained 
by extraction with aqua regia and subsequent using 
atomic absorption spectrometry (GBC SensAA, Brae-
side, Australia).

Data analysis

The analyses were performed with using a Statistica 9 
software (Tulsa, USA), and the variability of the mea-
sured characteristics between the monitoring plots was 
tested with an ANOVA model and the Tukey test.

Results and discussion

The results indicate that the higher Ca content was in 
beech leaves litterfall on the control plot EES Krem-
nické vrchy Mts (1.4 times more than on the stressed 
plot by Žiar nad Hronom). In contrast, the mean con-
tents of magnesium, sodium, potassium and arsenic 
were higher on the MP Žiar nad Hronom (1 time, 1.6 
times, 1 time and 5 times, respectively). The calcium in 
leaves is shown in Fig. 2. 

The difference in the average Ca content in leaves 
between the compared plots was 29.72% and it was 
statistically significant (F(1,14) = 26.852; p = 0.00014) 
(Table 2). The values of Ca content in the surface hu-
mus show that Ca content decreased with depth on the 
stressed plot (Fig. 3). The average Ca contents in the 
subhorizon Oon were 11,720.09 mg kg–1 and 19,962.38 
mg kg–1 on the MP Žiar nad Hronom and the EES Krem-
nické vrchy Mts, respectively. The difference was big, 
representing 41.29% and it was statistically significant 
(F(1,4) = 43.749, p = 0.0027). The average Ca content 
was higher in the subhorizons Oof than in the subhori-
zons Oon for both monitoring plots. The difference in 
Ca content in Oof subhorizons between the compared 
plots was nearly 45% (F(1,4) = 41.434, p = 0.003). The 
lowest average Ca content was found out in the humi-
fication subhorizon (Ooh) (Table 2). The results show 
that lower Ca content in beech leaves and in surface 
humus of the stressed stand was apparently due to lower 
pH of the top soil. This fact is in agreement with the 
data reported by Geisler et al. (1998) who state that 
the soil pH significantly affects the Ca availability to 
plant species. For  instance, Šimková (2014) found an 
amount of 16,602 mg kg–1 of Ca in surface humus of a 
native beech stand in the Štiavnické vrchy Mts which 
is by 43.5% more than the Ca content in our stressed 
stand and by 18.9% less than in our control beech stand. 
Carnol and Bazgir (2013) found approximately equal 
amounts of Ca in beech litterfall of the Duke’s for-
est (south-eastern Belgium) compared to the control 
samples, this is, however by 29% more than displayed 
samples from our stressed plot. According to Pelíšek 
(1964), simultaneously with predominance of calcium, 
soil became enriched with Ca and Mg. Similar finding 
were attained in our study beech ecosystems, where Ca 
content exceeded Mg content by approximately 87% 
and 91% on the MP Žiar nad Hronom and EES Krem-
nické vrchy Mts, respectively. 

Magnesium is an essential component of chloro-
phyll and it affects the assimilation rate. Mg concen-
trations in beech leaves reached medium variability 
values on both monitored plots (Table 2). Stronger Mg 
accumulation was found in the leaves taken from the 
stressed stand (Fig. 2). 

Based on our findings, the Mg content in the sur-
face humus increased with depth (Oon < Oof < Ooh) 
(Fig. 3, Table 2). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2

Fig. 2. Dynamics of average contents of nutrients and arsenic 
in beech litterfall in 2014.
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Fig. 3 Dynamics of average content of selected elements in surface humus in 2014–2015 
 

Fig. 3. Dynamics of average content of selected elements in surface humus in 2014–2015.

Carnol and Bazgir (2013) report Mg con-
tent by approximately 49% lower in beech leaf lit-
ter compared to our results. Ditmarová and Kmeť 
(2002) studied the health state of beech trees in 
terms of the latent damage caused by immission 
load in 1996–2000 on plots in the Slovenské stredo-
horie Mts. According to these authors, the highest 
average contents of Mg in assimilatory organs were  
2,175.00 mg kg–1 (EES Kremnické vrchy Mts) and 
2,130.00 mg kg–1 (MP Žiar nad Hronom). These Mg 
values were higher compared to our results. This can be 
probably attributed to the fact, that the authors analyzed 
fresh assimilatory organs. Based on the study by Stael-
ens et al. (2011), their oak leaf fall (Quercus robur L., 
Quercus rubra L.) was poorer in Mg content, however, 
their birch litterfall (Betula pendula Roth) was richer 
compared to our beech litterfall.

Higher K accumulation in beech leaves was re-
corded in the samples from the stressed stand (Fig. 2), 
with values ranging from 2,165 to 6,465 mg kg–1 (Ta-
ble 2). The K content in our beech litterfall was much 
higher than those recorded by Kavvadias et al. (2001) in 
northern Greece, but approximately equal to the K con-
tent in fir litterfall reported by the same author. On the 
other hand, Berger et al. (2009) found K content 1.5 
times higher than our results indicate. Potassium is not 
a structural component of plant litter and it is removed 
by physical leaching (Swank, 1986).

The average K concentration in the Oon sampled 
from the Kremnické vrchy Mts was 1.1-times higher 
compared to the Štiavnické vrchy Mts. However, the 
difference was statistically insignificant. The average 
K contents in the subhorizons Oof were 1,026.86 and 
1,490.53 mg kg–1 on MP Žiar nad Hronom and EES 

Ca Ca

Mg Mg

Na Na

K K

As As
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plot MP Žiar nad Hronom were beyond the limit value 
for agriculture soils (30 mg kg–1) stated by the Act No. 
220/2004. Markert (1996) sets a background value for 
As in plants as 0.1 mg kg−1. The average As content 
in beech litterfall on the MP Žiar nad Hronom was by 
47.4% higher than the declared value.

For comparison, we present here Zn and Hg con-
centrations in the surface humus samples taken from 
the two plots in 2007. Their values indicate that mer-
cury (MP ZH: 0.18–0.65 mg kg–1, EES KV: 0.09–0.12 
mg kg–1) and zinc (MP ZH: 41.15–174.77 mg kg–1, EES 
KV: 71.42–114.00 mg kg–1) in samples from the MP 
Žiar nad Hronom and the EES Kremnické vrchy Mts 
were lower than the limit values (Fig. 4). 

Conclusion

Based on the results, significant differences between 
plots were observed for Ca content in the litterfall of 
beech leaves as well as of surface humus. A result of 
Ca content in surface humus proved that Ca content de-
creased with depth in the stressed plot. In control stand, 
there was found more or less increase of Ca content with 
depth. Mgt, Kt and Nat were markedly higher in litter-
fall of stress stand compared to the samples from con-
trol plot. On the contrary, surface humus samples from 
control plot were richer in nutrients. The concentration 
of arsenic in samples of surface humus was higher in 
stressed stand and considerably increased with depth of 
organic horizon. The results showed, that As amounts 
detected in surface humus (Ooh) and in beech litterfall 
of stress stand were higher than limit values, thus point-
ing at the persistent negative impact of industrial acti-
vity on the environment of Žiar territory.

Zn (mg kg–1)

0 50 100 150 200

A

Ooh

Oof

Oon

MP Žiar nad Hronom EES Kremnické vrchy Mts
 

Hg (mg kg–1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A

Ooh

Oof

Oon

MP Žiar nad Hronom EES Kremnické vrchy Mts  
 

       Fig. 4. Content of risk elements in surface humus in 2007. 
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Fig. 4. Content of risk elements in surface humus in 2007 
(mg kg-1).

Kremnické vrchy Mts, respectively. The difference be-
tween the compared plots was statistically significant 
(F(1,4) = 11.141, p = 0.029). The highest K content was 
detected in Ooh subhorizons (1,690.78 mg kg–1), (Table 
2, Fig. 3). 

On average, a higher accumulation of K in the sur-
face humus was found out in an altered hornbeam stand 
in Štiavnické vrchy Mts (2,310 mg kg–1) (Šimková, 
2014). Bublinec (1994) reports the value of 2,004 mg 
kg–1 as the average K content in the surface humus in 
beech ecosystems in the Kremnické vrchy Mts. Com-
pared with our results, the values of K content observed 
by this author were lower by 6% (control plot) and 16% 
(stressed plot).

The content of Na in the beech leaf fall from the 
EES Kremnické vrchy Mts varied from 67.20 to 174.88 
mg kg–1. In the leaves from MP Žiar nad Hronom, it 
ranged from 104.80–151.80 mg kg–1 (Table 2, Fig. 2). 
Higher mean Na content in litterfall is known, for ex-
ample, from González-Arias et al. (1998) dealing 
with Pinus radiata litterfall from more polluted areas 
of the Basque Country.

Na content showed an increasing trend with sur-
face humus depth (Fig. 3). The between-plot difference 
in the average Na content in the subhorizon Oon was 
statistically significant (F(1,4) = 14.878; p = 0.018). The 
higher average content was detected in Ooh subhorizon 
on plot MP Žiar nad Hronom (Table 2).

The results show that higher values of arsenic in 
beech leaves were found on the MP Žiar nad Hronom 
compared to the control stand (Table 2, Fig. 2). Por-
ter and Peterson (1975) report some plant species 
growing on As mine wastes (south-west England, UK) 
containing average arsenic levels ranging from 350 to 
2,040 mg kg–1. Another example is the mean concentra-
tions of As in leaves of plants growing near a copper 
mine (northern Peru) ranging from 111 to 1,651 mg kg–1 
(Bech et al., 1997). Temple et al. (1977) found average 
As contents of 5.80 mg kg–1 in grass samples and 7.40 
mg kg–1 in tree and shrub foliage 700 m away from a 
secondary lead smelter; with the samples collected at a 
control site containing < 1 mg kg–1. 

The higher As content was detected in the stressed 
stand in both subhorizons – Oon and Oof (Fig. 3). The 
differences between the compared monitoring plots 
were 60.04% and 33.97%, respectively, however, with-
out statistical significance. The average As content in 
the subhorizon Ooh represented 55.60 mg kg–1. This 
was by 98% and 94% more than the As content in the 
Oon and Oof subhorizons (Table 2). Tang et. al (2015) 
studied a total As concentration in a timberline area in 
the east part of the Tibet Plateau. These authors ob-
tained the total mean As concentrations in leaves, litter 
horizon and soil mineral horizons (A, C) fluctuating as 
follows (mg kg–1): 0.12 < 16.51 < 26.72 mg kg–1. Ac-
cording to the results presented in our study, the litter 
horizon tended to accumulate also high concentrations 
of As in the beech leaves. The results indicate that the 
As amounts detected in the surface humus (Ooh) on the 
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