Occurrence of species of the Nectria s.l. (Bionectriaceae, Nectriaceae, Hypocreales, Ascomycetes) in Central and South-eastern Europe

Ivan Mihál, Alojz Cicák ${ }^{1}$, Hristo Tsakov², Petar Petkov²
${ }^{1}$ Institute of Forest Ecology, Slovak Academy of Sciences, Štúrova 2, 96053 Zvolen, Slovak Republic,
E-mail: mihal@sav.savzv.sk
${ }^{2}$ Forest Research Institute, Bulgarian Academy of Sciences, St. Kliment Ohridski Blvd. 132,
1756 Sofia, Bulgaria,
E-mail: forestin@bulnet.bg

Abstract

Mihál, I., Сicák, A., Tsakov, H., Рetkov, P. 2009. Occurrence of species of the Nectria s.l. (Bionectriaceae, Nectriaceae, Hypocreales, Ascomycetes) in Central and South-eastern Europe. Folia oecol., 36: 32-38.

Recent data on the occurrence of species of Nectria s.l. (Bionectriaceae, Nectriaceae, Hypocreales, Ascomycetes) in the Czech Republic, Poland, Slovakia, Hungary, Romania and Bulgaria (Central and Southeastern Europe) are presented, including some notes on their ecological characteristics. Eight species were found in the five countries outside Slovakia (Cosmospora coccinea, C. purtonii, Nectria aurantiaca, N. cinnabarina, N. coryli, Neonectria coccinea, N. galligena, N. punicea). Due to long-term investigations in a large number of localities, we found six additional species in Slovakia (Cosmospora episphaeria, Hydropisphaeria peziza, Nectria berolinensis, N. cucurbitula, Neonectria ditissima, N. radicicola). Nectria aurantiaca (one locality in Bulgaria), N. coryli (one locality in Slovakia and Bulgaria) and Neonectria punicea (three localities in Slovakia and one in Bulgaria) can be considered as rare. The records of these three species in Bulgaria can be regarded as the first ones for this country. The data were collected mainly in the course of a long-term study of the necrotic bark disease of beech (Fagus sylvatica L.) focused on Slovakia. The disease is apparently mainly caused by some species of Neonectria (N. coccinea , N. ditissima, N. galligena). It has spread in the last decades and often provokes epiphytocias.

Key words

Ascomycetes, Central Europe, fungi, Nectria s.l., Nectriaceae, South-eastern Europe

Introduction

The genus Nectria s.l. belongs to the significant genera of ascomycetous fungi. Species of this genus occur mostly as saproparasites of herbs and wooden plants, in form of sexual stage (telemorpha) and asexual stage (anamorpha), for example genera Cylindrocarpon Wallenw., Fusarium Link., Tubercularia Tode or Verticillium Nees. The genus Nectria s.l. includes species that are significant vascular parasites of forest trees. In contrast to the original tracheomycotic fungi, for example those of the genus Ophiostoma Syd. et P. Syd., some species of the genus Nectria are considered to evoke secondary disease of tracheomycotic type, which is mani-
fested by creation of necrotic wounds on the tree barks (JANČAŘíK, 2000).

Occurrence and distribution of the fungi of the families Bionectriaceae and Nectriaceae, but especially of the genus Nectria is in focus of many mycologists and phytopathologists in Central and South-eastern Europe. In the Czechia these families were studied, for example by Antonín and Vágner (2001), Jančařík (2000), Novotný (2003), in Poland Mańka (2005), Rozycki (1993), Ryкоwski et al. (1989), in Slovakia by СісА́к and Mihál (2002), Miнál (2002), Mihál et al. (2007), in Hungary by Mihál and Cić́k (2005), Standovár and Kerekes (2003), in Romania by Chira and Chira (1997, 1998), Chira et al. (1996), Miнál and Сicák (2007),

Mihalciuc et al. (2001), in Bulgaria by Cić́k et al. (2006), Rosnev and Petkov (1996). Important for the control and possible elimination of dangerous effects of the fungi of the genus Nectria in forests stands is deeper knowledge of biology and ecology of these fungi.

It is to be stressed, that few data about the occurrence, distribution and ecological requirements of representatives of the genus Nectria in Central and South-eastern Europe are recorded. For this reason, when studying the necrotic disease of beech in Czech Republic, Poland, Slovakia, Hungary, Romania and

Bulgaria we focused on the evidence of the present occurrence of some species of the genus Nectria s.l. Their occurrence together with ecological characteristics and taxonomical notes are presented in this study.

Material and methods

Occurrence of the fungi of different genera of the families Bionectriaceae and Nectriaceae was recorded in

Table 1. Basic characteristics of research localities in the individual countries

Country	Orographic unit	Locality	Date of research	Altitude [m asl]	Exposition	Beech composition [\%] / Age of stand [years]
CZ	Moravsko-sliezske Beskydy	Šance	2. 4. 2001	650	SW	90.0 / 60
	Moravsko-sliezske Beskydy	Hukvaldy	3. 4. 2001	450	E	38.0 / 90
	Moravsko-sliezske Beskydy	Pustevny	3.4. 2001	680	SE	74.0 / 115
PL	Beskid Sądecki	Kiczera	17. 4. 2007	695	W	80.0 / 60-70
	Beskid Nizki	Przelecz Zebrak	18.4. 2007	825	W	95.0 / 90-110
	Bieszczady	Połanki	19.4. 2007	500	NE	30.0 / 60-80
	Bieszczady	Przysłop	19.4. 2007	610	S	80.0 / 70
SK*	35 in total	77 in total	1990-2008	280-1,025	all	25-100 / 20-250
H	Börzöny	Diosjenö	17.4. 2001	500	N	80.0 / 100
	Bükk	Öserdö	18.4. 2001	800	SW	92.0 / 20-200
	Zempéni-Hegység	Telkibánya	18.4. 2001	300	SE	50.0 / 65
RO	Munții Stânişoarei	Crucea	17. 10. 2006	690	SW	90.0 / 30-100
	Munții Bistriței	Holda	17. 10. 2006	655	NE	95.0 / 30-120
	Munții Bârgau	Piatra Fântânele	18. 10. 2006	1,017	E	98.0 / 80
	Munții Tibleş	Telciu	19. 10. 2006	420	E	$90.0 / 70$
BG	Vitosha	Dragalevski monastir	18.4. 2005	1,080	NE	100 / 70-130
	Stara planina	Petrohan	20.4. 2005	1,400	NE	100 / 100-110
	Stara planina	Barzia	20.4. 2005	1,150	NW	100 / 100-120
	Stara planina	Etropole	21. 4. 2005	720	NE	99.0 / 120-130
	Stara planina	Ribaritsa	24.4. 2006	1,100	NW	$100 / 70$
	Stara planina	Shipkovo	25. 4. 2006	650	NE	$100 / 70$
	Stara planina	Troyan	25. 4. 2006	480	N	$100 / 80$
	Stara planina	Balkanets	26.4. 2006	1,250	N	100 / 100-120
	Stara planina	Shipka	28.4. 2006	1,100	NE	90.0 / 65
	Stara planina	Kotel	24.10. 2007	700	N	$100 / 120$
	Stara planina	Ticha	25.10. 2007	750	SW	90.0 / 70
	Stara planina	Ichera	26.10. 2007	700	NW	100 / 80
	Stara planina	Karandila	26. 10. 2007	1,000	SE	100/135
	Strandzha	Silkosia	25.4. 2009	305	N	100/98

SK*, nomenclature of the basic characteristics of Slovakia‘s localities is given by Сıć́k and Мiнál (2002) and Miнál (2002); CZ, Czech Republic; PL, Poland; SK, Slovakia; H, Hungaria; RO, Romania; BG, Bulgaria
countries mentioned above during evaluation of the degree of the necrotic disease in 2001, 2005-2009. In Slovakia this investigation was runnig longer, since 1990 until 2008. The basic characteristic of the study sites in individual countries are given in the Table 1.

The samples of fruiting bodies in vivo in the form of teleomorpha were collected from beech bark as well as from other woody trees and various substrates. In the laboratory the species were identified under the microscope. The identification keys by Breitenbach and Kränzlin (1986), Butin (1995), Červenka (1971), Rossman et al. (1999), Samuels and Blackwell (2001) were used. The species Neonectria ditissima and Neonectria radicicola were identified by cultivation in vitro (N. ditissima - det. G. JuhásovÁ, N. radicicola - det. K. Bučinová). Samples of fruiting bodies were collected and identified by the authors of this study and they have been deposited in the form of exicates in the collection of the first author in the Institute of Forest Ecology of SAS in Zvolen (Slovakia).

Data on the distribution, validity of taxonomical names as well as ecotrophy (ie nutrition requirement to substrate) of the species of both families included in this study were taken from the works by Červenka (1971), Rossman et al. (1999), Škubla (2003) and from the CABI Bioscience (2008), as well as from the existing papers of the authors of this study (MiHÁL, 2002; MIHÁL et al., 2007). The nomenclature and taxonomical classification of the identified species mainly by Rossman et al. (1999) as well as by Castlebury et al. (2006), Mantiri et al. (2001) and Samuels et al. (2006) were used.

Results and discussion

During the investigation of the beech necrotic disease in the selected localities in individual Central and So-uth-eastern countries the occurrence of several species of the families Bionectriaceae and Nectriaceae were recorded. Their survey in individual localities is given in the Table 2.

As shown in this table, in these countries, outside of Slovakia except, we recorded the occurrence of 8 species. Due to a long-term investigation in Slovakia, which was carried out in many localities, we recorded occurrence of further 6 species, which we have not found outside of Slovakia, viz. Cosmospora episphaeria, Hydropisphaeria peziza, Nectria berolinensis, N. cucurbitula, Neonectria ditissima and N. radicicola (see Table 2). However, many of them may also occur in other Central and South-eastern European countries. For example, we have no doubts about the occurrence of the generally distributed species like Nectria cucurbitula or Neonectria ditissima. How-
ever, we have a few data on the occurrence of other target species in the adjacent countries.

The data on the occurrence of Bionectriaceae and Nectriaceae in the adjacent countries found in the available literature are given in the Table 3. When compared with the findings given in the Table 2, we see that also in these countries some species were recorded in the past, which in recent study we have found only in Slovakia (Cosmospora episphaeria, Hydropisphaeria peziza, Neonectria ditissima and N. radicicola). Therefore the data from the Table 3 can be considered as complementary data to the species we recorded in those countries during our investigations. According to Breitenbach and Kränzlin (1986), among all species given in Tables 2 and 3 the species Nectria coryli and Neonectria punicea can be considered as rare. However, from the point of view Cosmospora purtonii, Hydropisphaeria peziza and Nectria berolinensis can be included in the group of rare fungi. For example, in Slovakia Nectria coryli was recorded in only one locality, Neonectria punicea in three localities, while Hydropisphaeria peziza in four localities (MiHÁL et al., 2007; МінÁL, 2008 - unpubl.). In the adjacent countries the occurrence of these species is not known and in the literature (Antonín and VÁgner, 2001) we have found only one record of Hydropisphaeria peziza occurrence. For this reason, the rarer our data of Cosmospora purtonii occurence in Hungary, whereas the Nectria aurantiaca, N. coryli and Neonectria punicea occurrence in Bulgaria can be considered as the first record for the Hungary and Bulgaria.

All species given in the Tables 2 and 3 can be classified, according to the newest taxonomical concepts (Rossman et al., 1999), into 2 families and 4 genera:
o Bionectriaceae Samuels et Rossman fam. nov. (genus: Hydropisphaeria Dumort.)
o Nectriaceae Tul et C. Tul. (genera: Cosmospora Rabenh., Nectria (Fr.) Fr., Neonectria Wollenw.).
According to the most recent literature, the fungi of the families Bionectriaceae and Nectriaceae have a relatively stabilized taxonomical status. Similarly as the other macromycetes, also these species were subjected to different taxonomical nomenclature in the past. According to Rossman et al. (1999), more than 200 species related to the genus Nectria have been described up to day. Among the complex works presenting the newest knowledge on the biology and taxonomy of the genus Nectria s.l. and other related genera, the works of Brayford et al. (2004), Castlebury et al. (2006), Mantiri et al. (2001), Rossman et al. (1999), Samuels (1976), Samuels and Blackwell (2001) and Samuels et al. (2006) should be mentioned. The overview of the current taxonomical validity of the nomenclature within the genus Nectria
s.l., in the sexual stage (teleomorpha) as well as the asexual stage (anamorpha) is presented in the Table 4. However, the anamorphic developmental stages of several species of the genus Nectria and related genera have not been identified with certainty. They are also an objective of different studies (for example Bray-

FORD et al., 2004; Rossman et al., 1999). Absence of the described anamorphs of some species of Nectria s.l., especially in older literatures is understandable because of the demanding field and laboratory studies of the asexual developmental stage of the fungi of the genus Nectria.

Table 2. Findings of species of Bionectriaceae and Nectriaceae in selected localities in individual countries of Central and South-eastern Europe

Country	Locality	C. coc.	C. pur.	N. aur.	N. cin.	N. cor.	Neo. pun.	Neo. coc.	Neo. gal.
CZ	Šance							*	
	Hukvaldy							*	
	Pustevny				*				
PL	Kiczera								*
	Przełecz Zebrak	*							
	Połanki								*
	Przysłop								*
SK*	77	6	4	0	36	1	3	29	39
H	Diosjenö		*					*	
	Öserdö	*			*				*
	Telkibánya								*
RO	Crucea				*				
	Holda							*	*
	Piatra Fântânele				*			*	
	Telciu								*
BG	Dragalevski monastir	*							
	Petrohan	*							*
	Barzia								*
	Etropole							*	
	Ribaritsa								*
	Shipkovo							*	
	Troyan							*	
	Balkanets	*							*
	Shipka	*							
	Kotel					*			*
	Ticha							*	
	Ichera								*
	Karandila						*	*	
	Silkosia			*					
Total	102	12	5	1	40	2	4	39	52

C. coc., Cosmospora coccinea Rabenh.; C. pur., Cosmospora purtonii (Grev.) Rossman \& Samuels; N. aur., Nectria aurantiaca (Tul. et C. Tul.) Jacz.; N. cin., Nectria cinnabarina (Tode: Fr.) Fr.; N. cor., Nectria coryli Fuckel; Neo. pun., Neonectria punicea (Kuntze et J.C. Schmidt) Fr.; Neo. coc., Neonectria coccinea (Pers.: Fr.) Rossman \& Samuels; Neo. gal., Neonectria galligena (Bres.) Rossman \& Samuels
SK*: We found altogether 13 species of Bionectriaceae and Nectriaceae on 77 localities in Slovakia. Besides listed species (see Table 2) have been determined further six species in Slovakia: Cosmospora episphaeria (Tode: Fr.) Rossman et Samuels (on 19 localities), Hydropisphaeria peziza (Tode: Fr.) Dumort. (on four ones), Nectria berolinensis (Sacc.) Cooke (two ones), Nectria cucurbitula (Tode: Fr.) Fr. (four ones), Neonectria ditissima Tul. et C. Tul. (three ones) and Neonectria radicicola Gerlach \& L. Nilsson (on one locality).

Table 3. Occurence of species of Bionectriaceae and Nectriaceae in the individual countries of Central and South-eastern Europe by selected literature sources

Country	Literature source	Species
CZ	Antonín and Vágner (2001)	Cosmospora episphaeria, Hydropisphaeria peziza
	Jančaŕík (2000)	Neonectria ditissima, Neonectria coccinea, Neonectria galligena
	Novotný (2003)	Neonectria radicicola
PL	Mańka (2005)	Neonectria ditissima, Neonectria coccinea, Neonectria galligena
	Rozycki (1993)	Neonectria radicicola
	Rүкоwskı et al. (1989)	Neonectria coccinea
H	Mitál and Cicák (2005)	Cosmospora coccinea, Cosmospora purtonii, Nectria cinnabarina, Neonectria coccinea, Neonectria galligena
	Standovár and Kerekes (2003)	Neonectria ditissima, Neonectria galligena
RO	Chira and Chira (1997)	Neonectria dittisima
	Chira and Chira (1998)	Nectria cinnabarina, Neonectria ditissima, Neonectria coccinea
	Chira et al. (1996)	Neonectria ditissima, Neonectia galligena
	Mihalciuc et al. (2001)	Nectria cinnabarina, Neonectria ditissima, Neonectria coccinea
BG	СісА́к et al. (2006)	Cosmospora coccinea, Neonectria coccinea, Neonectria galligena
	Rosnev and Petkov (1996)	Neonectria ditissima, Neonectria coccinea

Table 4. Current status of taxonomy of species of the family Bionectriaceae and Nectriaceae according to selected literature sources

Teleomorpha (Rossman et al., 1999)	Teleomorpha	Anamorpha
	CABI Bioscience, 2008)	(Rossman et al., 1999)
Cosmospora coccinea	Cosmospora coccinea	Verticilium olivaceum W. Gams
Cosmospora episphaeria	Nectria episphaeria	Fusarium aquaeductum var. medium
		(Radlk. et Rabenh.) Lagerh.
Cosmospora purtonii	Cosmospora purtonii	Fusarium aquaeductum var. aquaeductum
	(Radlk. et Rabenh.) Lagerh.	
Neonectria radicicola ${ }^{1)}$	Neonectria radicicola	Cylindrocarpon destructans (Zins.) Scholten ${ }^{2}$)
Hydropisphaeria peziza	Nectria peziza	Acremonium sp.)
Nectria aurantiaca	Nectria aurantiaca	Tubercularia aurantiaca (Babington) Seifert
Nectria berolinensis	Thyronectria berolinensis	Tubercularia berolinensis (Wollenw.) Rossman
Nectria cinnabarina	Nectria cinnabarina	Tubercularia vulgaris (Tode: Fr.) Fr.
Nectria coryli	Nectria coryli	Tubercularia sp.???
Nectria cucurbitula	Neonectria fuckeliana	Zythiostroma pinastri (P. Karst.) Hőhn. ex Weese
Neonectria ditissima $\left.{ }^{4}\right)$	Neonectria ditissima	Cylindrocarpon willkommii (Lindau) Wollenw. ${ }^{2}$)
Neonectria punicea ${ }^{5}$	Neonectria punicea	Cylindrocarpon album (Sacc.) Wollenw.)
Neonectria coccinea	Nectria coccinea	Cylindrocarpon candidum (Link) Wollenw.
Neonectria galligena	Neonectria galligena	Cylindrocarpon heteronema (Berk. et Broome) Wollenw.

[^0]The species of both families grow as saprophytes or parasites on forest trees. More species are able to occupy substrate of both broadleaved and coniferous trees. The species Nectria aurantiaca, N. cinnabarina, N. coryli, Neonectria punicea, N. galligena and N. coccinea are typical for broadleaved trees, especially for beeches. However, they can be also found on untypical substrates. For example, in some cases in Slovakia we found Nectria cinnabarina on the wood of oaks, Norway spruces, fires or even vine (MiHÁL et al., 2007). In our collections we have also species that grow as saproparasites on old fruiting bodies of the pyrenomycetic fungi (Pyrenomycetales, Ascomycetes) or on the fruiting bodies of polyporous tinder fungi (Polyporales, Basidiomycetes). The species of Cosmospora coccinea, C. episphaeria and C. purtonii also belong to such species. On the other hand, the species Nectria cucurbitula is typical for coniferous trees and Nectria berolinensis occurs on bark of the Ribes sp.

Acknowledgement

The authors thank to G. Juhásová and K. Bučinová for their help by determination of Neonectria ditissima and Neonectria radicicola. Supported by the Grant Agency VEGA of the Ministry of Education, Slovak Republic (No. 2/7004/27) and by the joint Project of the Institute of Forest Ecology of Slovak Academy of Sciences, Zvolen (Slovak Republic) and Forest Research Institute of the Bulgarian Academy of Sciences, Sofia (Bulgaria): The Structure, Health Status and Soil Conditions of Beech Forest Ecosystems in South-eastern and Central Europe.

References

Antonín, V., Vágner, A. 2001. Makromycety [Macromycetes]. In Antonín, V. (ed.). Houby, lišejniky a měchy Národního parku Podyjí [Fungi, Lichens and Mosses of the Podyjí National Park]. Brno: Masarykova Univerzita, Czech Republic, p. 9-96.
Brayford, D., Honda, B.M., Mantiri, F.R., Samuels, G.J. 2004. Neonectria and Cylindrocarpon: the Nectria mammoidea group and species lacking microconidia. Mycologia, 96: 572-597.
Breitenbach, J., Kränzlin, F. 1986. Fungi of Switzerland. Vol. 1. Ascomycetes. Luzern: Verlag Mykologia. 412 p .
Butin, H. 1995. Tree diseases and disorders. Causes, biology and control in forest and amenity trees. Oxford: University Press, Great Britain. 252 p.
Castlebury, L.A., Rossman, A.Y., Hyten, A.S. 2006. Phylogenetic relationships of Neonectria/Cylindrocarpon on Fagus in North America. Can. J. Bot., 84: 1417-1433.

Chira, D., Chira, F. 1997. Beech canker spreading in Romania. In Knižek, M. (ed.). Workshop on forest insect and disease survey Písek, Czech Republic, April 7-10, 1997: proceedings. Jíloviště-Strnady: Forestry and Game Management Research Institute, p. 46-53.
Chira, D., Chira, F. 1998. Beech problems in Romania. In Disease/Environment interactions in forest decline. Proceedings of a workshop at the IUFRO Working Party 7.02.06 Vienna, Austria, March 16-21, 1998. p. 23-28.

Chira, F., Chira, D., Nemteanu, P., Vladuti, S. 1996. Beech canker (Nectria sp.) - a disease which continues to spreading. Revtă Silvic., 1: 25-29.
СісА́к, А., Miнál, I. 2002. State of necrotic disease of beech stands in Slovakia. Mikol. i Fitopat., 36: 93-105.
Cicák, A., Mihál, I., Tsakov, H., Petkov, P. 2006. Actual status of the beech bark necrotic disease in the North-Western Bulgaria. J. Forest Sci., 52: 226-233.
ČERVENKA, M. [ed.], 1972. Klúč na určovanie výtrusných rastlin. 2. diel. Slizovky a huby [Key to determination of sporulating plants. Pt. 2. Myxomycetes and Fungi]. Bratislava: SPN. 392 p.
CABI Bioscience, CBS, Landcare Research 2008. Index Fungorum Database [online]. [cit. 2008-11-19]. http://www.speciesfungorum.org/Names/Names. asp
Deutsche Sammlung von Mikroorganismen und Zellkulturen 2001. DSM No. 62810. In Catalogue of strains 2001: archaea, bacteria, filamentous fungi, yeasts, plasmids, phages / DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen Braunschweig: DSMZ, 2001.
Available also at:
http://www.dsmz.de/microorganisms/html/strains/ strain.dsm062810.html
JanČAR̆í, V. 2000. Korní nekrozy buku [Beech bark necrosis]. Lesn. Práce, 79: 314-316.
Mantrini, F.R., Samuels, G.J., Rahe, J.B., Honda, B.M. 2001. Phylogenetic relationships in Neonectria species having Cylindrocarpon anamorphs inferred from mitochondrial ribosomal DNA sequences. Can. J. Bot.,79: 334-340.
Mańka, K. 2005. Fitopatologia Leśna [Forest phytopathology]. Warszawa: PWRiL. 368 p.
Miнál, I. 2002. A contribution to distribution and ecology of fungi of the genus Nectria in Slovakia. Ekológia (Bratislava), 21, Suppl. 2: 62-70.
МінÁL, I., СІСА́к, A. 2005. State of beech bark necrotic disease in northern Hungary. Lesn. Čas. - For. J., 52: 55-60.
Mihál, I., Сicák, A. 2007. A report of beech bark necrotic disease in northern Romania. Proc. Rom. Acad., Ser. B, 9: 95-98.

Mihál, I., Cicák, A., Bučinová, K. 2007. Distribution, ecology and taxonomical notes to species of genera Hypomyces and Nectria (Hypocreales) in Slovakia. Mikol. i Fitopat., 41: 242-251.
Mihalciuc, V., Chira, D., Chira, F., Danci, A. 2001. Monitoring of forest insect and disease in Romania. In Knižek, M. (eds). Methodology of Forest Insect and Disease Survey in Central Europe. Proceedings of the IUFRO WP 7.03.10 workshop, September 24-28, Buşteni, Romania. Prague : Institute of agricultural and food information, p. 86-91.
Novotný, D. 2003. A comparison of two methods for the study of microscopic fungi associated with oak roots. Czech Mycol., 55: 73-82.
Rosnev, B., Petkov, P. 1996. Condition of the Fagus sylvatica stands in Central and Eastern part of Stara planina Mountains. In Study, Conservation and Utilisation of Forest Resources. Proceedings, Vol. II., Sofia, Bulgaria. p. 156-160.
Rossman, A.Y., Samuels, G.J, Rogerson, C.T., Lowen, R. 1999. Genera of Bionectriaceae, Hypocreaceae and Nectriaceae (Hypocreales, Ascomycetes). Studies of Mycology, 42. Baarn Delft, The Netherlands: Cebtraalbureau voor Schimmelcultures. 248 p.

Rozycki, H. 1993. Effect of heavy metals (Pb, Zn, Cu, Cd) on mycelial growth of Cylindrocarpon destructans (Zinssm.) Scholt. Zbl. Mykol., 148: 265-275.
Rykowski, K., Oszako, T., Sierota, Z. 1989. Zagroźenie buka v Bieszczadach [Dieback of beech in Bieszczady]. Las pol., 15: 5-8.
Samuels, G.J. 1976. A revision of the fungi formerly classified as Nectria subgenus Hyphonectria. Memoirs of the New York Botanical Garden, U.S.A., 26. New York: New York Botanical Garden. 126 p.

Samuels, G.J., Blackwell, M. 2001. Pyrenomycetes - Fungi with Perithecia. In McLaughlin, McLaughlin, Lemke (eds). Systematics and Evolution, The Mycota VII Part A. Heidelberg, Berlin: SpringerVerlag, Germany, p. 221-255.
Samuels, G.J., Rossman, A.Y., Chaverri, P., Overton, B.E., Põldmaa, K. 2006. Hypocreales of the Southeastern United States: An Identification Guide. CBS Biodiversity Series, No. 4. Utrecht: Centraalbureau voor Schimmelcultures. 145 p .
Standovár, T., Kenderes, K. 2003. A review on natural stands dynamics in beechwoods of East-Central Europe. Appl. Ecol. and Envir. Res., 1: 13-46.
Škubla, P. 2003. Mycoflora Slovaca. Number of the Copy 19. Bratislava: Mycelium Edition. 1103 p.

Výskyt húb rodu Nectria s.l. (Bionectriaceae, Nectriaceae, Hypocreales, Ascomycetes) v strednej a juhovýchodnej Európe

Abstract

Súhrn

Autori uvádzajú aktuálne údaje o výskyte húb rodu Nectria s.l. (Bionectriaceae, Nectriaceae, Hypocreales, Ascomycetes) v Českej republike, Pol'sku, Slovensku, Mad'arsku, Rumunsku a Bulharsku, ako aj niektoré ekologické a taxonomické poznámky k determinovaným druhom. Mimo územia Slovenska bolo zistených osem druhov (Cosmospora coccinea, C. purtonii, Nectria aurantiaca, N. cinnabarina, N. coryli, Neonectria coccinea, N. galligena, N. punicea). Vd’aka dlhotrvajúcemu výskumu na vel'kom počte lokalít na Slovensku, autori zistili výskyt d’alších šiestich druhov (Cosmospora episphaeria, Hydropisphaeria peziza, Nectria berolinensis, N. cucurbitula, Neonectria ditissima, N. radicicola). Ako vzácne huby boli zistené druhy Nectria aurantiaca (na jednej lokalite v Bulharsku), N. coryli (na jednej lokalite na Slovensku a v Bulharsku) a Neonectria punicea (tri lokality na Slovensku a jedna v Bulharsku). Všetky tri uvedené druhy boli ako prvonálezy zistené takisto aj v Bulharsku. Údaje autorov o výskyte druhov rodu Nectria s.l. v krajinách strednej a juhovýchodnej Európy pochádzajú najmä z nálezov týchto húb na kôre bukov (Fagus sylvatica L.), pričom niektoré druhy spôsobujú epifytóciu nekrotického ochorenia kôry buka (napr. druhy Neonectria coccinea, N. ditissima a N. galligena).

[^0]: ${ }^{1)}$ Nomenclature of species and literature source by MANTIRI et al. (2001); ${ }^{2}$ nomenclature of species and literature source by Butin (1995); ${ }^{3)}$ nomenclature of species and literature source by Samuels (1976); ${ }^{4}$ nomeclature of species and literature source by Samuels et al. (2006); ${ }^{5}$ nomeclature of species and literature source by CASTLEbURY et al. (2006); ${ }^{6}$ nomenclature of species and literature source by Deutsche Sammlung von Mikroorganismen und Zellkulturen (2001)

